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We introduce the basics of Riemannian geometry, and the corresponding notation and symbol conventions used
in the main paper. For a comprehensive introduction, we refer to [Lee, 1997, Jost, 2011, Hein et al., 2007] from
which our exposition has been developed. Then, we show the proof of proposition 1 in the main paper and analyze
the speed of the convergence of our RKHS norm-based energy estimate to the stabilized regularization energy.

1 Notation and symbol convention

Table 1: Notation and symbol convention used in the main paper.

M Manifold of dimension m
g Riemannian metric on M
grs and grs A coordinate representation of g and its inverse
dV Natural volume element
∆ The Laplace-Beltrami operator

X A dataset of points {X1, · · · , Xu} ⊂ Rn
X A point ∈M as an element of X
x A coordinate representation of a point X ∈M
Nk(X) k-nearest neighbors of X
N (X) A neighborhood of X determined by a distance on M
TX(M) A local first-order approximation of M

D A differential operator
D0 A differential operator applied to TX(M)
‖f‖D The norm of f induced by D
‖f‖K The RKHS norm of f corresponding to a kernel K

ϕ Surrogate function as smooth interpolant of f(Nk(X))
S Trace of Hessian of ϕ
h ϕ as a second-order polynomial interpolation
q ϕ as a Gaussian kernal interpolation

An m-dimensional manifold M is a locally Euclidean1 topological space of dimension m: At each point X ∈
M , there is an open neighborhood which is homeomorphic2 to an open subset of Rm. A chart on M is a pair
(U, φ), where U is an open subset of M and φ : U → V is a homeomorphism of U onto an open subset V of Rm.
For a given point X ∈ M the components of the map φ(X) = (x1(X), . . . , xm(X)) = (x1, . . . , xm), are called
the coordinates of X on U . An atlas A for M is a collection of charts whose domains cover M .

Anm-dimensional smooth manifold is a topological manifold equipped with a smooth structure: A pair of charts
(U, φ) and (V, ϕ) are smoothly compatible if either U ∩ V = ∅ or φ ·ϕ−1 : Rm → Rm is a C∞-diffeomorphism.3

A manifold M is smooth if every pair of members of A are smoothly compatible.

1For rigorous definition, it is also Hausdorff and second countable.
2A homeomorphism is a continuous function between topological spaces that has a continuous inverse.
3ACr-diffeomorphism is a r-times continuously differentiable homeomorphism whose inverse is also r-times continuously

differentiable.
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A tangent vector (field) v is a linear map v : C∞(M) → R that satisfies the derivation rule: For all f, g ∈
C∞(M) and for X ∈M :

v(fg) = f(X)v(g) + g(X)v(f).

The set of all tangent vectors vX atX is a vector space called the tangent space TX(M). An intuitive interpretation
of TX(M) can be obtained if M is a sub-manifold of a Euclidean space: A tangent vector vX is an ‘arrow’ that
is tangent to M at X . Then, the tangent space TX(M) can be interpreted as a tangent plane at X that is a linear
approximation of M at the vicinity of X .

A Riemannian manifold (M, g) is a smooth manifold M provided with a metric g which varies smoothly over
Mand provides an inner product on TX(M) for all X ∈M .

2 Proof of proposition 1
In Riemannian normal coordinates (x = [x1, . . . , xm]>) centered at each point X , Laplacian evaluation at X
becomes the trace of the Hessian matrix given as an evaluation of the Hessian operator atX . Given this, the proof is
obtained by slightly modifying the techniques used in the convergence analysis of [Audibert and Tsybakov, 2007]
and [Kim et al., 2013]. We include the proof for completeness.

Given an underlying probability distribution P supported by a manifold M , our goal is to show that for each
point X ∈M , tr[Hh(x)] converges to ∆f(X) as the size u(t) of Xu(t) = {X1, . . . , Xu(t)} ⊂M grows.

At each data point Xi ∈ X , the Hessian Hf(Xi) of f is estimated by fitting hi to f |Nε(Xi), where Nε(Xi) =
B(Xi, ε) ∩ X , B(Xi, ε) is the ε-neighborhood of Xi in coordinates, i.e., B(X, ε) := {X ′ : ‖x− x′‖TX(M) ≤ ε},4
and h|S denotes the restriction of a function h on a set S: The Hessian Hhi(xi) of hi is used as an estimate
of Hf(Xi). Since the convergence property is homogeneous, we focus only on a single point Xi ∈ M . For
notational convenience, we will omit the index i and furthermore, we will identify a point Xj ∈M with its normal
coordinate representation xj ∈ TXi(M) at Xi whenever the latter is defined: The normal coordinate value xj of
Xj is defined when Xj is included in the injectivity radius inj(Xi) of Xi [Lee, 1997]. Here, we assume that (for
sufficiently large u)Nε(Xi) ∈ inj(Xi). This is possible since in a Riemannian manifold, inj(Xi) is always positive
for any Xi ∈M . For the points Xj /∈ inj(Xi), the corresponding normal coordinate values are assigned with 0.

Accordingly,Nε(Xi) will be represented based on its elements in coordinates {g1, . . . ,gk}. Here, we use letter
g instead of x to stress its indexing withinNε(Xi) rather than X . Note that at the normal coordinate chart centered
at Xi, the coordinate value xi of Xi is zero.

The coefficients of h (Eq. 10 in the main paper):

h(x) = f(0) +

m∑
r=1

[a]rx
r +

m∑
r=1,s=r

[b]r,sx
rxs, (1)

are obtained by solving a weighted least squares problem centered at xi = 0:

A ≈ B = arg min
Q
‖K(XQ− f)‖2

= (X>KX)−1X>Kf , (2)

where X is the design matrix containing the first and the second-order monomials of the coordinate values (centered
at xi = 0) of data points in X :

A =

[
∇f(0)>,

1

2
vec[Hf(0)]

]>
, B = [. . . , [a]r, . . . , [b]r,s, . . .]

>
, f = [f(X1), . . . , f(Xu)]>, (3)

where vec(M) extracts the upper triangular elements of a symmetric matrix M and forms a vector as a linear
alignment of them, and K is a diagonal weight matrix with [K]j,j = K(xj , ε) and the kernel K is defined as:

K(x, q) = 1[‖x‖<q], (4)

with 1[S] is the indicator function of the set S. Note that when Xj /∈ inj(Xi), xj = 0.

4For simplicity, we use the ε-neighborhood instead of k nearest neighbors Nk(Xi). The convergence in the latter case can
easily be established by enforcing Nk(Xi) ⊂ B(Xi, ε).
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The convergence of Hf(0) is established when ‖A−B‖ → 0 as u→∞ and ε→ 0.
First, we decompose this deviation as:

‖A−B‖2 ≤ ‖(X>KX)−1‖2‖K(XA− f)‖2, (5)

where we have used K = K2 = K> and ‖C>C‖22 = ‖C>‖22 for any matrix C. In Eq. 5, the first term depends
only on the distribution P on M and it is upper bounded as:

‖(X>KX)−1‖2 ≤
1

‖uεmE−1BE−1‖2
≤ 1

uεm+4λB
, (6)

where

E = diag([1/ε, . . . , 1/ε, 1/ε2, . . . , 1/ε2]>),

B =
1

uεm

u∑
j=1

X(xj/ε)
>X(xj/ε)K(xj , ε),

X(x) = [x1, . . . , xm, . . . , xrxs, . . . , ] ∈ RD,

D = m+m(m+1)
2 , and λB is the smallest eigenvalue ofB. The remainder of this section quantifies ‖K(XA−f)‖2

and λB based on the two regularity assumptions on the Hessian operator H and the probability distribution P .

2.1 Quantifying ‖K(XA− f)‖2

The deviation between the second-order approximation KXA and Kf depends on the smoothness of f . In partic-
ular, we can quantify them based on the boundedness of Hf :
Lemma 1 ([Belward et al., 2008]) Suppose that the Hessian (Hf(a) := Hf (a)) is Lipschitz continuous with the
Lipschitz constant γ. Then

‖K(XA− f)‖22 = C1γ
2kε6 (7)

with a constant C1 > 0 where k is the size of Nε(0).
Proof: For the simplicity of exposition, let’s represent each element of Nε(0) = {g1, . . . ,gk} based on its scale
and the normalized coordinate values: gj = sjvj with ‖vj‖ = 1.

Applying the first-order Taylor series remainder formula to f expanded at 0 gives for each point gi,

f(sjvj)− f(0)− sjv>j ∇f (0) =

∫ 1

0

(1− t)sjv>j Hf (sjvjt)sjvjdt,

⇔ f(sjvj)−
1

2
sjv
>
j Hf (0)sjvj − f(0)− sjv>j ∇f (0) =

∫ 1

0

(1− t)sjv>j (Hf (sjvjt)−Hf (0)) sjvjdt, (8)

where∇f := ∇f .
Substituting the definition of A (Equation 3) into (8) gives [K(XA− f)]j = 0 when [K]j,j = 0 and

|[K(XA− f)]j | =
∣∣∣∣12sjv>j Hf (0)sjvj − f(sjvj) + f(0) + sjv

>
j ∇f (0)

∣∣∣∣
≤
∫ 1

0

∣∣(1− t)sjv>j (Hf (0)−Hf (sjvjt)) sjvj
∣∣ dt

=
1

6
γs3j , otherwise.

Then

‖K(XA− f)‖2 =

u∑
j=1

[K(XA− f)]2j ≤
1

36
kγ2ε6, (9)

where we used the fact that only k summands are non-zero and sj ≤ ε. �

Substituting Eqs. 9 and 6 into Eq. 5 gives

‖A−B‖2 ≤ 1

36

1

λB

kγ2

uεm−2
. (10)
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2.2 Quantifying λB
Here, we adopt the results of [Audibert and Tsybakov, 2007] to construct a lower bound of λB . Applying
this result requires requires a certain regularity assumption on the underlying probability distribution P on M
([Audibert and Tsybakov, 2007]; Definition 1 of the main paper):
For some constants c0, ε0 > 0, we will say that a Lebesgue measurable set A ⊂ Rm is (c0, ε0)-regular if

λ[A ∩ B(x, ε)] ≥ c0λ[B(x, ε)], ∀ε ∈ [0, ε0],∀x ∈ A, (11)

where λ[S] is the Lebesgue measure of S ⊂ Rm. We fix constants c0, ε0 > 0 and 0 < µmin < µmax < ∞ and
a compact C ⊂ Rm. We say that the strong density assumption is satisfied if the distribution P is supported on a
compact (c0, ε0)-regular set A ⊆ C and has a density µ w.r.t. the Lebesgue measure bounded away from zero and
infinity on A (between µmin and µmax)

µmin ≤ µ(x) ≤ µmax, ∀x ∈ A and µ(x) = 0 otherwise. (12)

Theorem 1 ([Audibert and Tsybakov, 2007]) Let P satisfy the strong density assumption. Then, there exist con-
stants C2, µ0 > 0 such that for any 0 < ε ≤ ε0 and any n ≥ 1,

P⊗u(λB ≤ µ0) ≤ 2D exp(−C2uε
m), (13)

where P⊗u is the product probability measure according to which the sample is distributed.

Combining Eq. 13 and Eq. 10, we obtain that there are positive constants C1, C2, µ0 with probability larger than
1− (m2 + 3m) exp(−C2uε

m),

‖A−B‖2 ≤ C1

µ0

kγ2

uεm−2
. (14)

Adopting the strong density assumption, the probability Pε of sampling a data point from the ε-neighborhood of
xi = 0 (which is assumed to be zero) is

Pε =

∫
A

µ(x)1[‖x‖<ε]dx ≤ µmax

∫
A

1[‖x‖<ε]dx = µmaxυmε
m, (15)

where υm = λ[B(0, 1)] and A is the support of P .
Let’s define variables {1ε(j)}

1ε(j) =

{
1 if xj ∈ Nε(0)
0 otherwise. (16)

Applying Hoeffding’s inequality to {1ε(1), . . . ,1ε(u)} yields

P

 u∑
j=1

1ε(j)− uPε ≥ t

 ≤ exp

(
−2t2

u

)
. (17)

Substituting Eq. 15 into Eq. 17 we obtain

P (k − (µmaxυm)uεm ≥ t) ≤ exp

(
−2t2

u

)
, (18)

which states that k
uεd

= O(1).

3 Convergence of the RKHS-norm based energy evaluation to the stabilized energy
In Sec. 4 of the main paper, we use the RKHS-norm based local energy evaluation (Eq. 23 of the main paper)

‖qi‖2D :=

∞∑
k=1

ck

∫
TXi (M)

|Dkqi|x|2dx = ‖qi‖2K , (19)
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as an approximation of the stabilized energy (Eq. 21 of the main paper).
This is motivated by their large-scale behaviors: As u → ∞, the kernel parameter σ and the diameter of

Nk(Xi) shrink toward zero, and the approximation error (i.e. deviation between the two energies) converges to
zero at super-linear speed.

We first note that when we use a Gaussian kernel K(xj , ·) (Xj ∈ NK(Xi); instead of qi), the series in
Eq. 19 converges absolutely. Accordingly, the contribution of all high-order (say, from p to infinite) terms in
Eq. 19 is bounded by a monotonically decreasing function G of p [Yuille and Grzywacz, 1988]: Since precisely,
‖K(xj , ·)‖2D = 1, G is explicitly given as

G(p) = 1−
p−1∑
k=1

ck

∫
TXi (M)

|Dkqi|x|2dx. (20)

Furthermore, the corresponding sum of the high-order terms in the stabilized energy is bounded by [0, G(p)].
Accordingly, we can determine a p∗ so that the finite sum up to the p∗-th summand in Eq. 19 approximates the
local energy with any given approximation accuracy level.

Secondly, for any finite order p′ ≤ p∗, the corresponding derivatives of a Gaussian function are given as the
p′-th order Hermite polynomials multiplied by the Gaussian. Since a Gaussian function suppresses any poly-
nomials, these derivatives decrease rapidly as the corresponding points of evaluation deviates from its center
Xi [Kara, 2009]. The speed of this decay is controlled by the width σ2 of K. Accordingly, for given upper
bound s on the approximation error and the integral domain U ′(Xj), σ2 can be determined such that the deviation
between the local energy of K(xj , ·) (defined based on the integrals over the entire TXi(M) in Eq. 19) and its
restriction to U ′(Xj) becomes smaller than s. This can be shown by straightforwardly evaluating integrals: For
instance when m = 1 and (−µ, µ) = U ′(0), (Xj is assumed to be 0 without loss of generality), the integral of the
first-order norm of K(x) = exp(− x2

σ2 ) over the entire domain R ∼ T0(M) is5

∫ ∞
−∞

∣∣∣∣ ∂∂x exp

(
−x

2

σ2

)∣∣∣∣2 dx =

∫ ∞
−∞

4x2

σ4
exp

(
−2

x2

σ2

)
dx =

√
π

2

1

σ
. (21)

and the corresponding integral restricted to U ′(0) is obtained as∫ u

−u

∣∣∣∣ ∂∂x exp

(
−x

2

σ2

)∣∣∣∣2 dx =

√
π

2

1

σ
erf
(√

2
µ

σ

)
− µ
√
π

σ2
erf′
(√

2
u

σ

)
=

√
π

2

1

σ
erf
(√

2
µ

σ

)
− 2µ

σ2
exp

(
−2

u2

σ2

)
, (22)

where erf is the error function of the standard Gaussian distribution. We used the differentiation under the integral
sign (w.r.t. σ) technique to calculate the integrals in Eqs. 21 and 22. The approximation error of the first-order term
is then obtained as,

c1

(∫ ∞
−∞

∣∣∣∣D1 exp

(
−x

2

σ2

)∣∣∣∣2 dx− ∫ u

−u

∣∣∣∣D1 exp

(
−x

2

σ2

)∣∣∣∣2 dx
)

=
σ

2

√
π

2

[
1− erf

(√
2
µ

σ

)
− 2

√
2

π

µ

σ
exp

(
−2

u2

σ2

)]
. (23)

Similarly, the approximation error of the second-order term is given as,

c2

(∫ ∞
−∞

∣∣∣∣D2 exp

(
−x

2

σ2

)∣∣∣∣2 dx− ∫ u

−u

∣∣∣∣D2 exp

(
−x

2

σ2

)∣∣∣∣2 dx
)

= 3σ

√
π

2

[
1− erf

(√
2
u

σ

)
+

1

3

√
2

π
exp

(
−2

u2

σ2

)((
2u

σ

)3

− 2u

σ

)]
. (24)

5Since the Gaussian RKHS energy is shift invariant, we assume that Xi = 0 without loss of generality.
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For both the first- and the second-order errors, the normalized errors (terms in the outer parentheses in Eqs. 23
and 24) are bounded by [0, 1]. When σ is large, the exponential terms in the normalized errors dominates and
accordingly, the normalized errors tend to be 1. In this worse case, the approximation error decreases linearly with
respect to σ decrease. However, when σ is already small, erf dominates in the normalized errors6 and therefore, in
this case, the corresponding approximation errors decrease super-linearly. Since iteratively taking the derivatives
of a Gaussian with respect to σ2 yields polynomials, repeatedly applying the differentiation under the integral sign
technique shows that all higher-order terms behave exactly the same way: for each k, the approximation error is
given as a linear term αkσ (with αk being a constant) multiplied by the normalized error which is dominated by
an error function for small σ. Accordingly, for any order k, the approximation error decreases super-linearly.

Since Dkqi is a kernel expansion of Nk(Xi), its effective support can be limited within a neighborhood that
encompass {U ′(Xk), ∀Xk ∈ Nk(Xi)}. Then, we can control both σ2 and the diameter of Nk(Xi) so that the
resulting local energy ‖qi‖2D well-approximates the integrand in the regularizer (Eq. 7 of the main paper).

‖f‖2D :=

∫
M

∞∑
k=1

ck|Dkf |X |2dV (X), (25)

where

D2kf = ∆kf,D2k+1f = ∇(∆kf), (26)

and where ck ≥ 0, |D2kf |2 := (D2kf)2, and |D2k+1f |2 := g(D2k+1f,D2k+1f).
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