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Goal Method

General dynamic NeRF with time consistency/correspondences
even for large motion
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» Build static canonical model (i.e. geometry & appearance) at t=1
* Online optimization of deformations at t>7, regularized by b . | . y Y.
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Why? Backwards deformation models Solution: Initialize surrounding space Geometry: fived fixed
\have bad initialization for large motion!/ via deformation smoothness loss

Prior Work: Either category-specific (e.g. humans) or only handles
small motion (e.g. only consistent over short time windows)
-> Ours is first method to get correspondences for large general motion!

Ground Truth Ours

High-Level Method ldea: Input roundTrth - Varying the canonical model gives better reconstruction but loosens correspondences!
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Bonus: Fast As-Rigid-As-Possible Deformation Smoothness
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