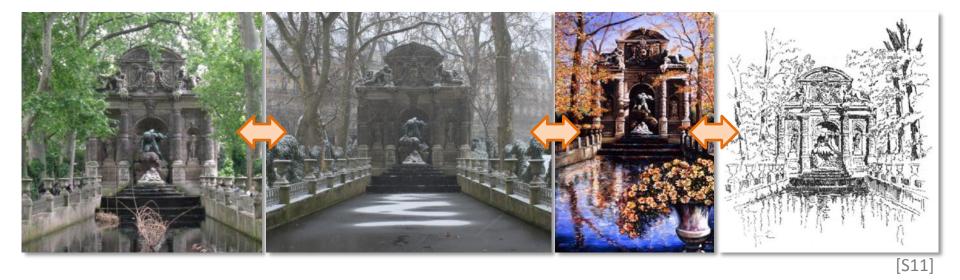
Image Matching



[S11] Shrivastava et al. Data-driven visual similarity for cross-domain image matching, SIGGRAPH ASIA 2011

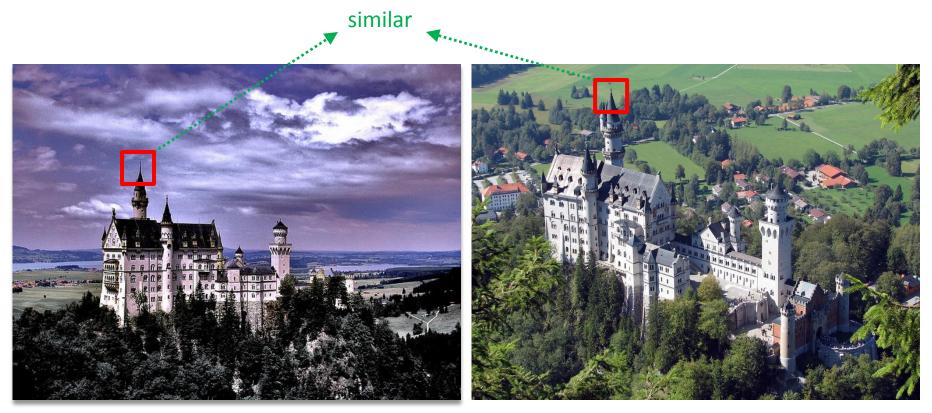
[C06] Cour et al. Balanced graph matching, NIPS 2006

same object, same time, similar perspectives

stereo, optic flow algorithms

same object, changed appearance, similar perspectives

holistic image matching

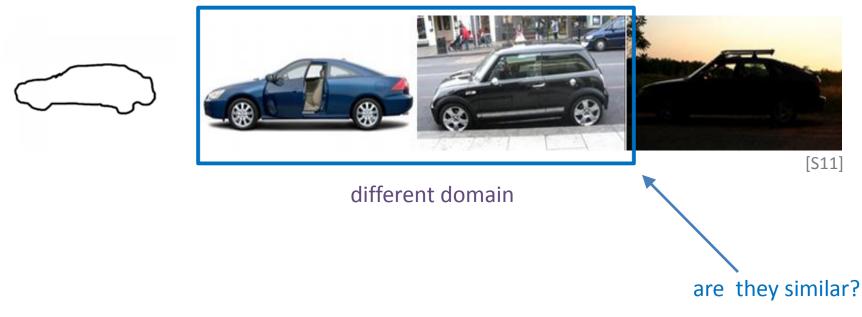


same object, changed appearance, different perspectives

geometry-based matching: e.g., estimating fundamental matrix

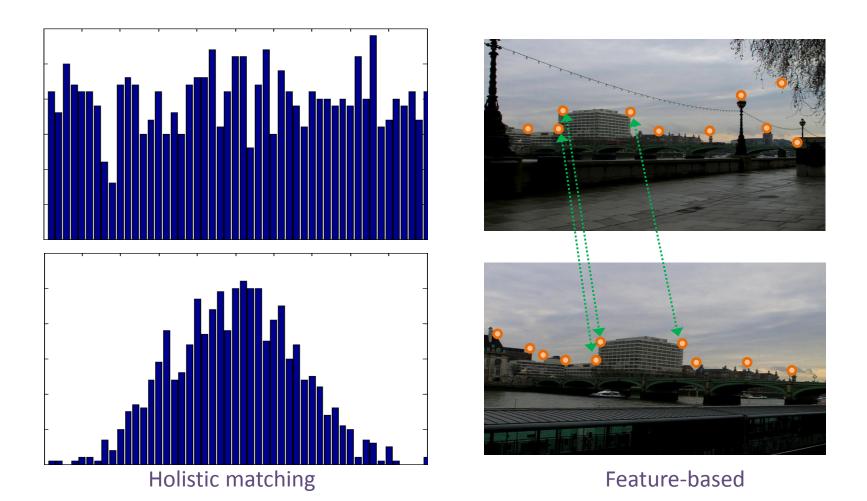
different objects in the same class

SIFT flow



discrimination power vs. robustness

Image Matching Approaches



output: real-valued score vs. feature-correspondence

Holistic Matching

- Image represented as a vector
 - Dense raw data: color value, gradients, etc.
 - Compact geometry-preserving or independent representations
 - bag-of-words, GIST, etc.
- Similarity measure (for vector space)

 Euclidean inner-product, histogram intersection, etc.
- Pros
 - Fast, robust against clutter
- Cons

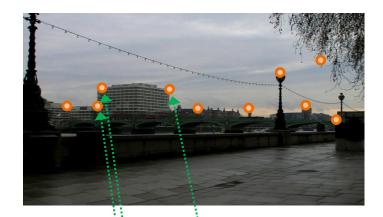
- Sensitive to scale, location, prespective, etc. variations

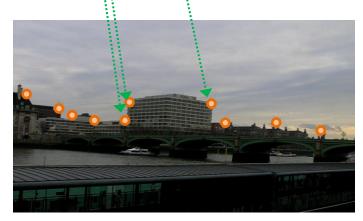
Feature-based Matching

- Matching performed based on detected features
- Pros
 - Robust against scale, location, prespective, etc. variations.
- Cons
 - Typically formulated as a non-trivial optimization problem (time consuming)
 - Bad for cluttered scene [S11]

Image Matching Approaches

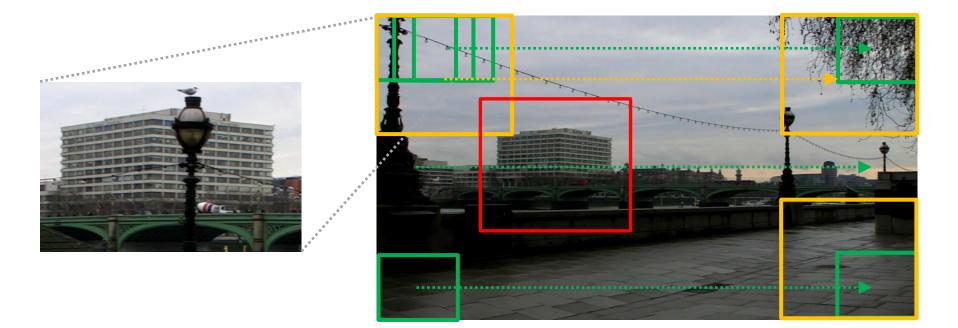
Holistic or dense matching





Feature-based

Sliding Window



helps bypassing problems of scale and location variations

Data-driven Visual Similarity [S11]

• Typical holistic image matching, e.g., Gist, bag-of-words:

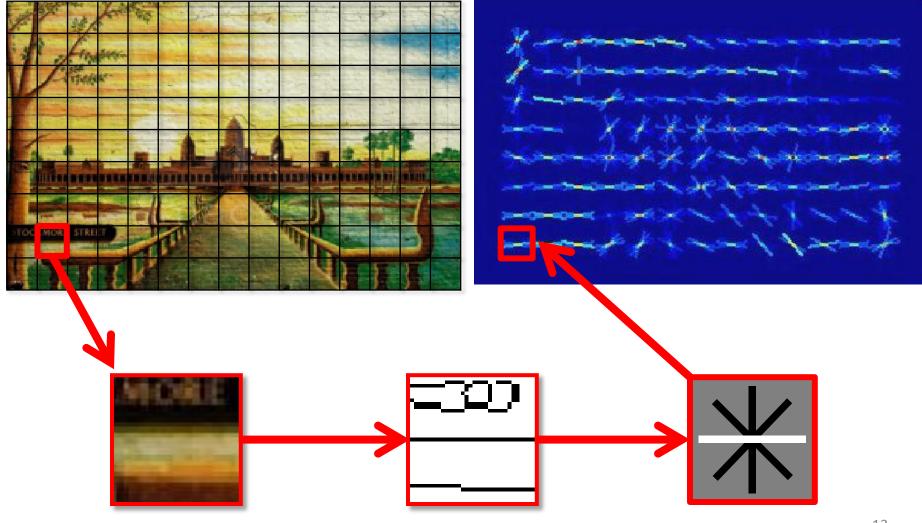
s(x,y)

- (dis-)similarity beteen x and y
- function of two arguments, symmetric, general
- [S11]

$$s(y|x)$$

- (dis-)similarity of y given x J
- function of one argument, specific to x
- exploits (huge) data set; unsupervised

Image Representation: histogram of oriented gradients (HOG)

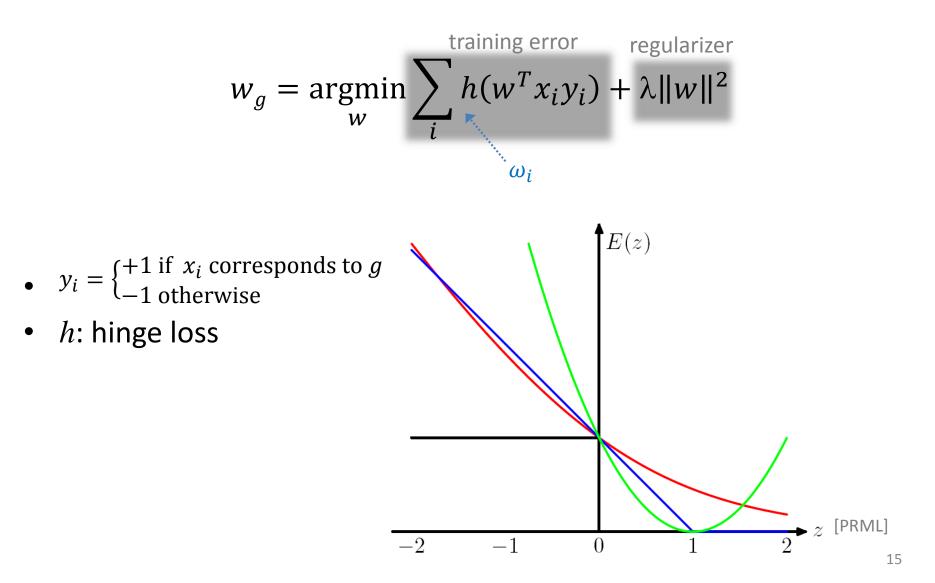


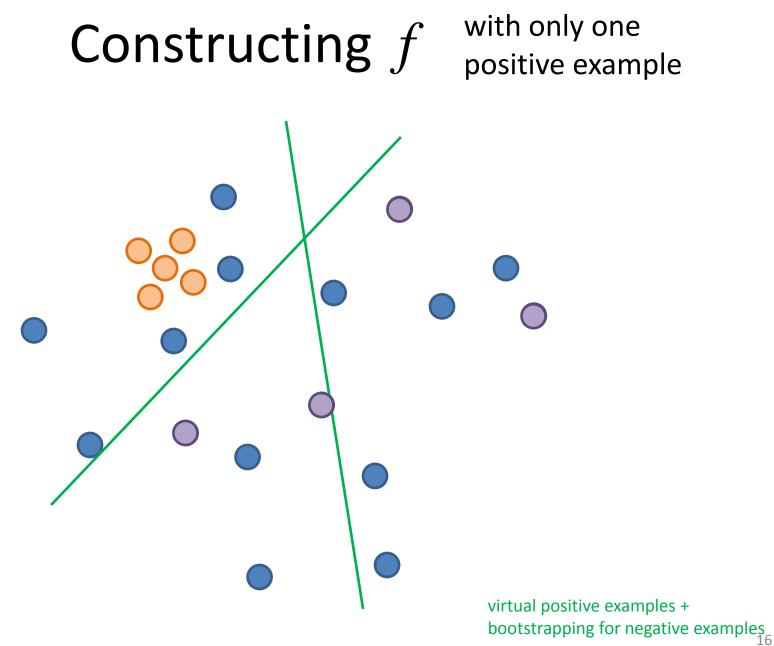
Similarity function $f_x(\cdot)$

- Constructed as a classifier for x against the rest
 - Training: x vs. many example images
 - Bootstrapping negative examples
 - Sliding windows
 - Linear support vector machine (SVM)

$$f_x(y) = w_x^T y$$

Linear SVM Classifier $f_g(y) = w_g^T y$



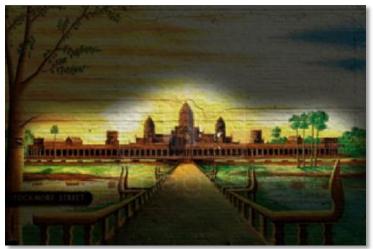


Interpretation of w_g as Saliency Map

$$f_g(y) = w_g^T y = \sum_j [w_g]_j y_j$$

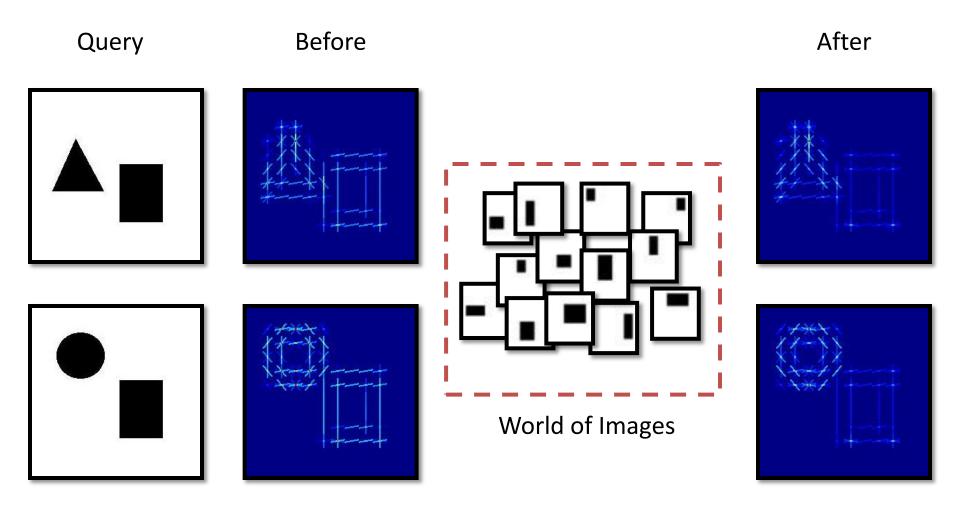
If the *j*-th element is <u>not relevant</u>, training SVM may result in small $|[w_g]_i|$





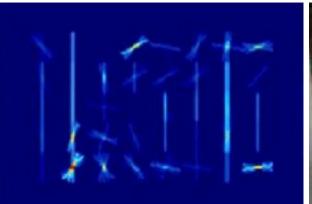
ideal w_g overlaid on gimages taken from the project website of [S11]

Synthetic Example



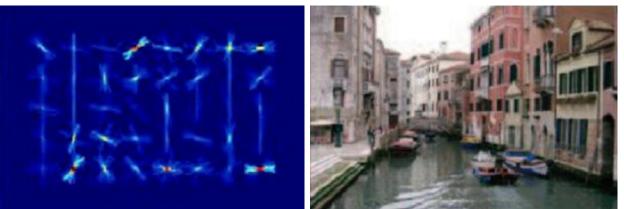
Query by Painting

Input Query



HOG

Top Match

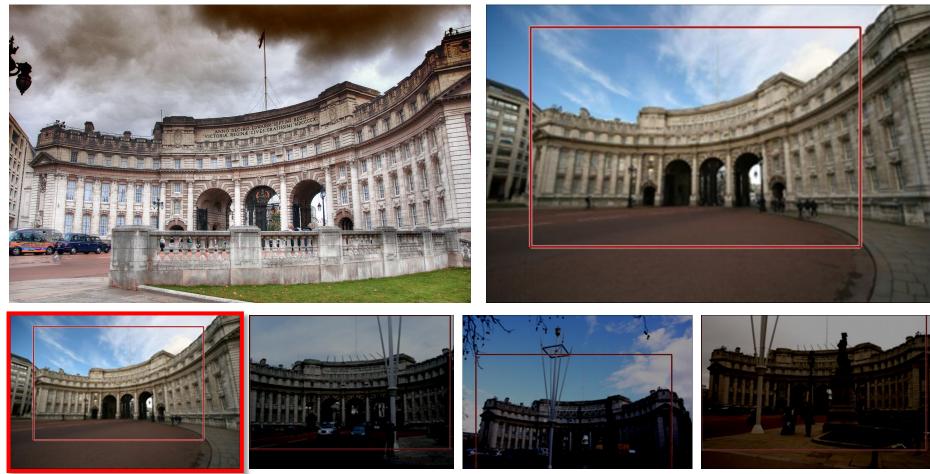


Learnt Weights

Top Match slide taken from the project website of [S11]

Query by Image

Input Query



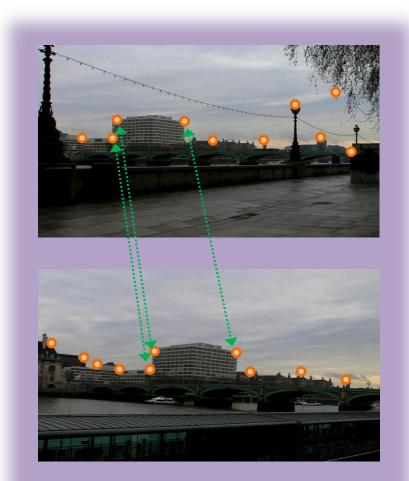
Top Matches

Applications

Video

Image Matching Approaches

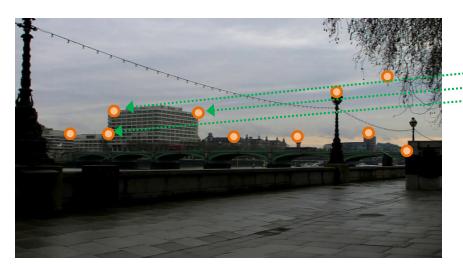
Holistic or dense matching

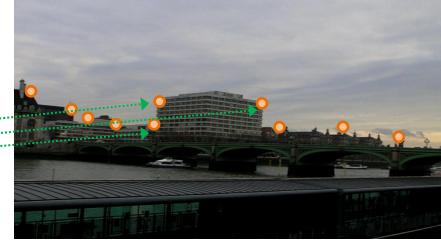


Feature-based

Balanced Graph Matching [C06]

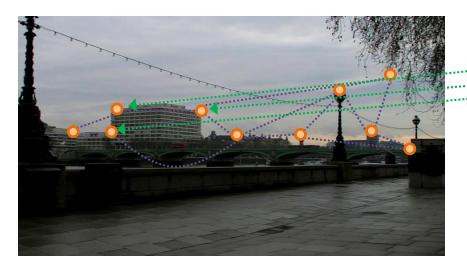
Image matching can be formulated as graph matching



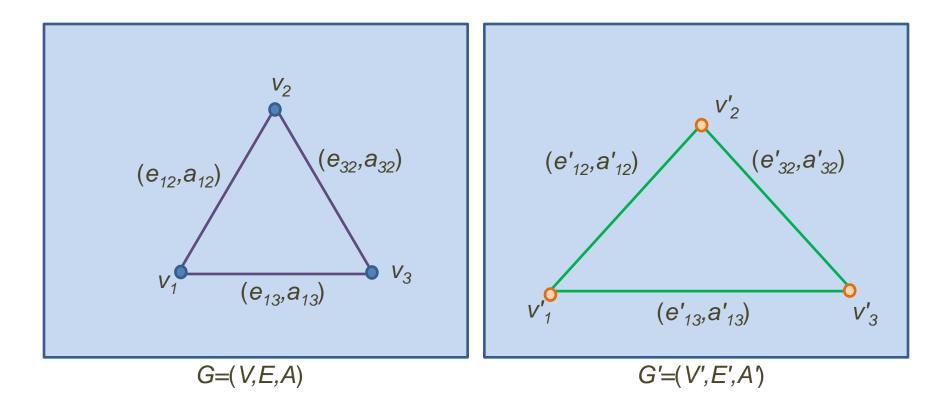


Balanced Graph Matching [C06]

Image matching can be formulated as graph matching

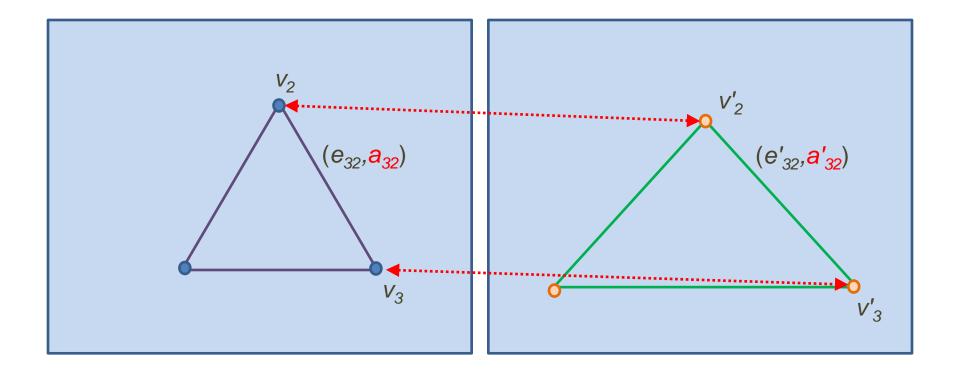


Graph Matching



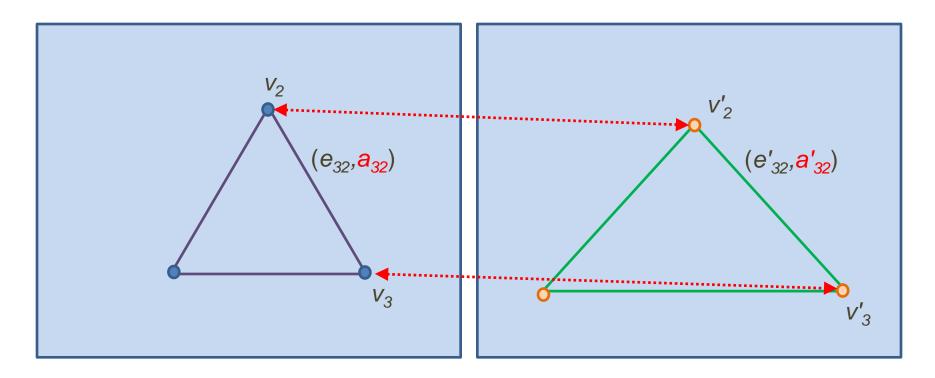
variable: matrix *M* containing vertice correspondences

Exploiting Regularity



If v_i and v_j matches v'_i and v'_j , respectively a_{ij} and a'_{ij} must be similar

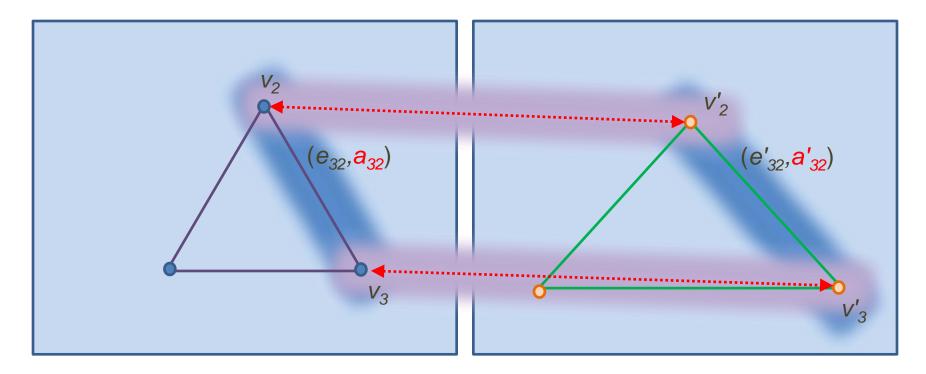
Graph Matching Score



$$E(M) = \sum_{e \sim e'} f(a_e, a_{e'}) \quad M = \{i, i'\}$$

f: similarity measure

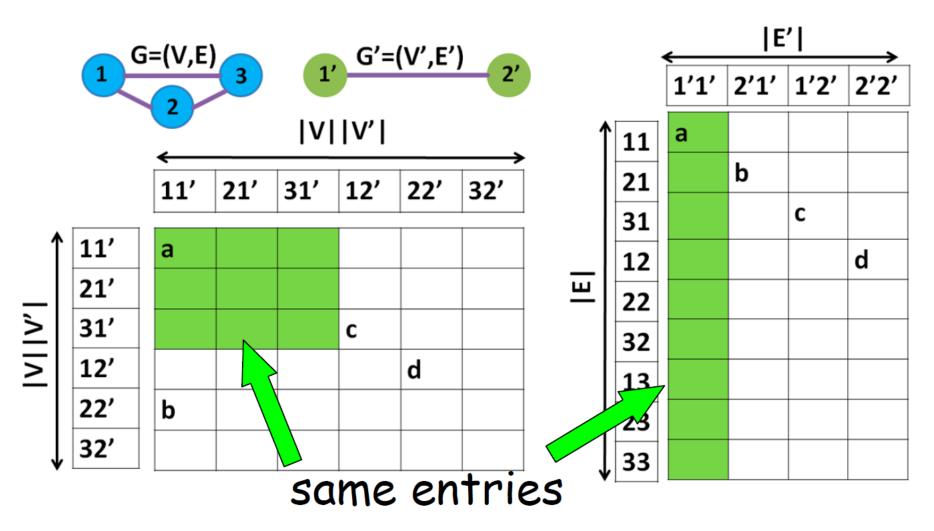
(Original) Optimization Problem



Maximize
$$E(M) = \sum_{e \sim e'} f(a_e, a_{e'})$$
 $M = \{i, i'\}$
 $E(x) = x'Wx, W_{ii',jj'} = f(a_{ij}, a_{i'j'})$ $x \in \{0,1\}^{nn'}$ $Cx \le b$

If v_i and v'_i is conntected to v_i and v'_i , respectively match vectors (i,i') and (j,j') must be signilar

Dual Representations



W: matching compatibility matrix

S: edge similarity matrix₂₉

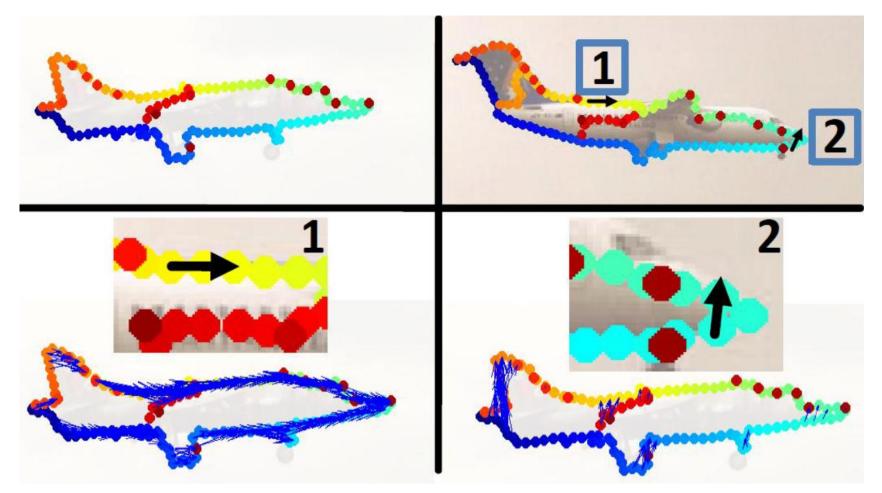
(Relxed) Optimization Problem

Maximize
$$\sum_{i'} x_{ii'} = 1, \sum x_{ii'} = 1$$

Original: $E(x) = x'Wx, Cx \le b, x \in \{0,1\}^{nn'}$
Relaxed: $E(x) = \frac{x'Wx}{x'x}, Cx = b$

 x^* obtained by solving an eigensystem

Normalization



edge 1 has many matching edges; individual matches are less informative edge 2 has few matching edges; individual matches are more informative

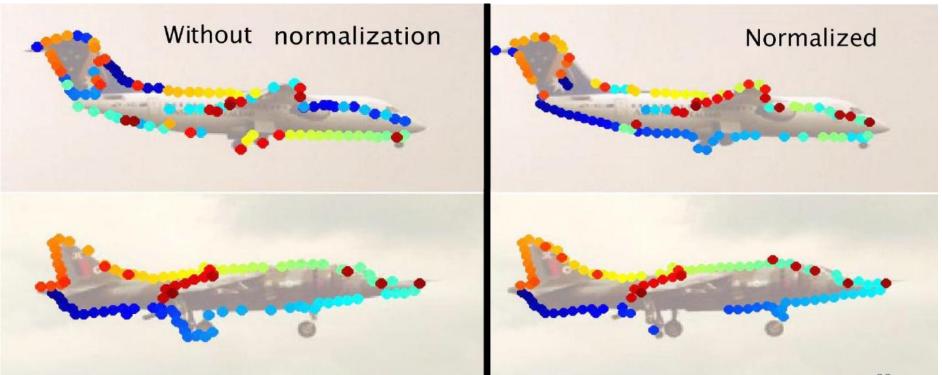
Normalization

- Normalize *W* (equivalently *S*) s.t. each column / row of *S* sums to one
 - 1. Input: compatibility matrix W, of size $nn' \times nn'$
 - 2. Convert W to S: $S_{ij,i'j'} = W_{ii',jj'}$
 - 3. repeat until convergence
 - (a) normalize the rows of S: $S_{ij,i'j'}^{t+1} := S_{ij,i'j'}^t / \sum_{k'l'} S_{ij,k'l'}^t$
 - (b) normalize the columns of S: $S_{ij,i'j'}^{t+2} := S_{ij,i'j'}^{t+1} / \sum_{kl} S_{kl,i'j'}^{t+1}$
 - 4. Convert back S to W, output W

Image Matching

$$S(e, e') = 1 \text{ if } \cos(\angle e - \angle e') > \cos \pi/8, \ \frac{|l(e) - l(e')|}{\min(l(e), l(e'))} < 0.5$$

 $\angle(e)$: angle, l(e): length e = ij within 30 pixels



Questions

- What do you like about those two algorithms?
- Why does the first algorithm work for cross-domain setting?
- What are the limitations?
- From where one could improve the algorithm?
- Time complexity?
- Cool application?

References

[SIFT flow] C. Liu, J. Yuen, and A. Torralba, SIFT flow: dense correspondence across scenes and its applications, *TPAMI* 2011

[HOG] N. Dalal and B. Triggs, Histograms of oriented gradients for human detection, *CVPR* 2005

[PRML] C. M. Bishop, *Pattern Recognition and Machine Learning*, Springer, 2006

Effect of Normalization

