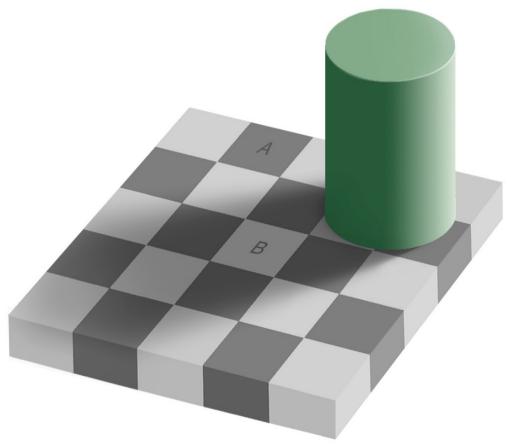
Illusion of Motion

Amir H. Moin amir.moin@dfki.de

Seminar: Computer Vision for Computer Graphics (CVfCG)

Max Planck Institute for Informatics (MPII) Saarbrücken May 7, 2013

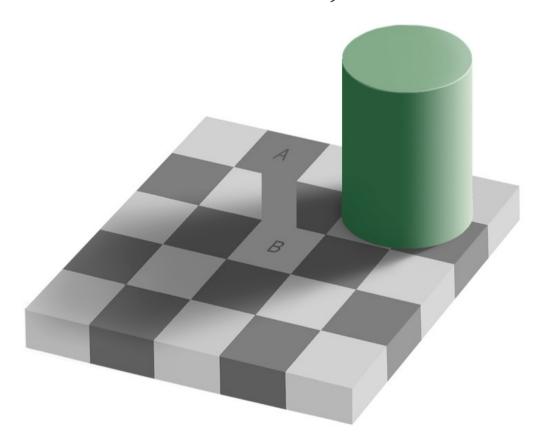

Author: Amir Moin 07.05.13

Outline

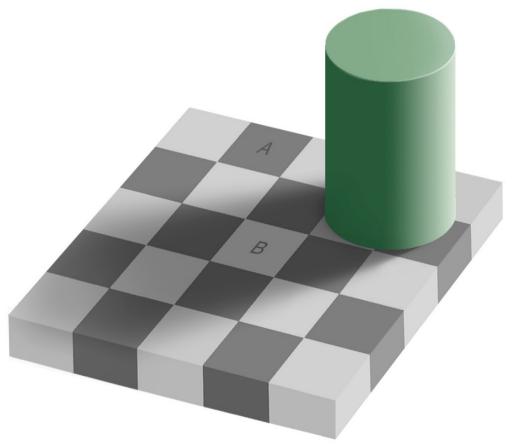
- •Introduction to illusory motion
- •Exploring Photobios (Shlizerman et al. 2011)
- •Video Magnification (Wu et al. 2012)
- •Summary & Conclusion
- •Questions & Discussion

•Checker Shadow Illusion

• Prof. Edward H. Adelson, 1995


Author: Amir Moin 07.05.13

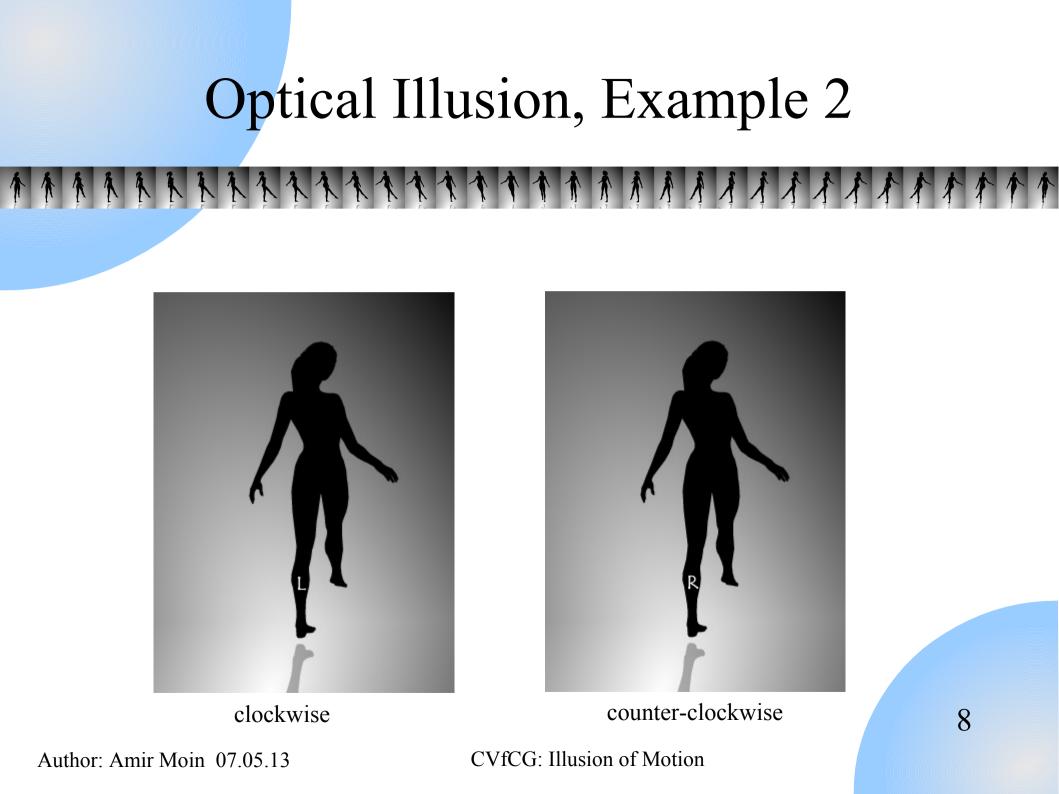
Checker Shadow IllusionProf. Edward H. Adelson, 1995

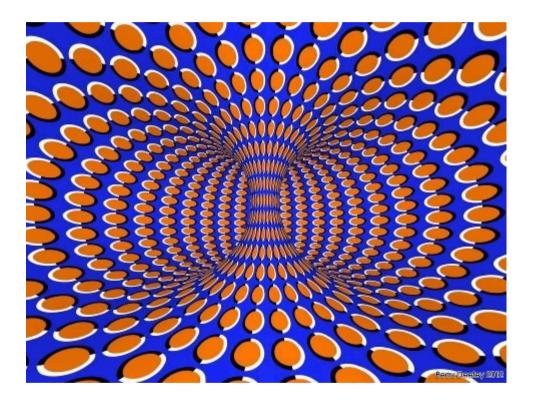

Author: Amir Moin 07.05.13

Checker Shadow IllusionProf. Edward H. Adelson, 1995

•Checker Shadow Illusion

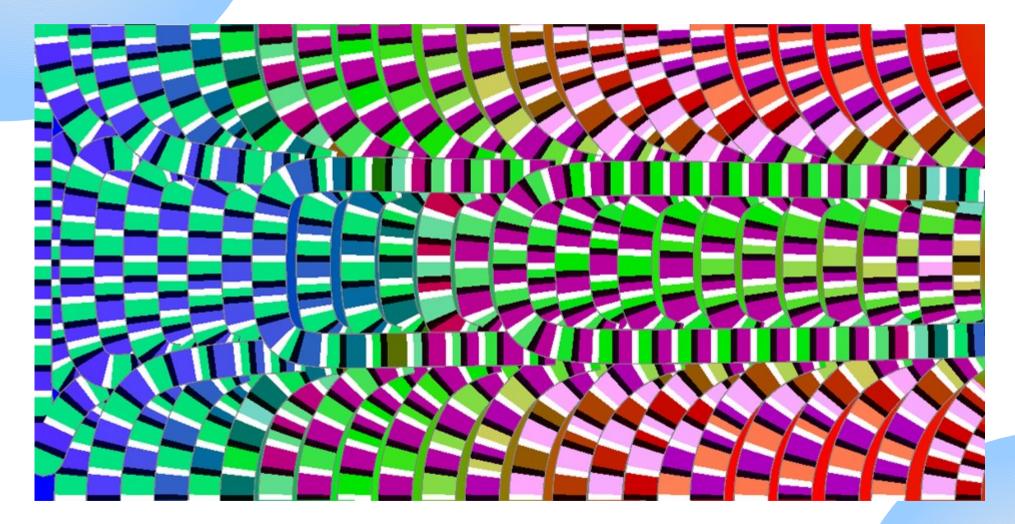
• Prof. Edward H. Adelson, 1995


Spinning Dancer (silhouette illusion) by web designer Nobuyuki Kayahara, 2003

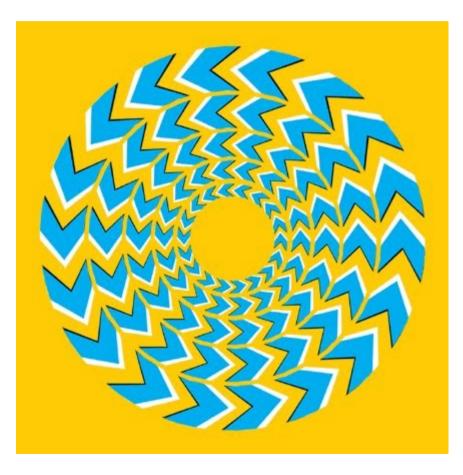

Author: Amir Moin 07.05.13

CVfCG: Illusion of Motion

7

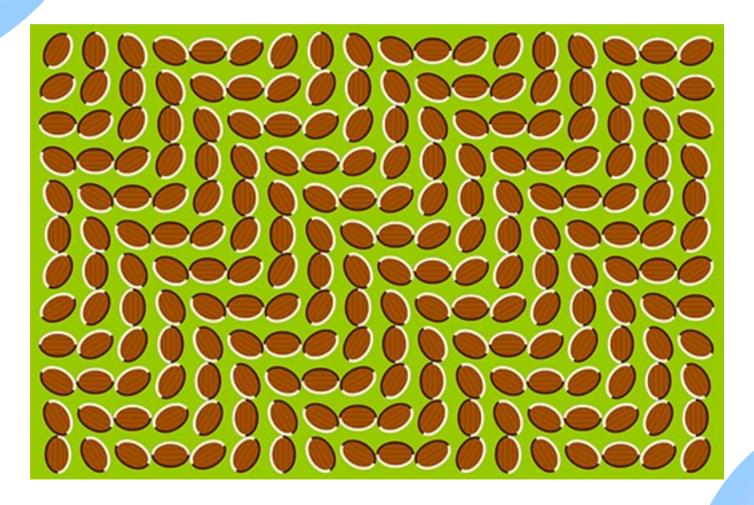


Optical Illusion, Example 3: Illusory Motion


Author: Amir Moin 07.05.13

Optical Illusion, Example 4: Illusory Motion

Author: Amir Moin 07.05.13


Optical Illusion, Example 5: Illusory Motion

11

Author: Amir Moin 07.05.13

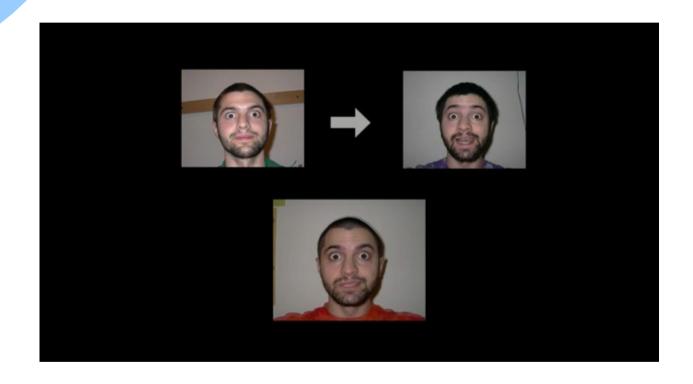
Optical Illusion, Example 6: Illusory Motion

Illusory Motion

- •A.k.a. motion illusion (illusion of motion)
- •Kind of optical illusion
- •Static image appears to be moving
- •Cognitive effects:
 - Color contrasts
 - Shape positions

Outline

- Introduction to illusory motion
- •Exploring Photobios (Shlizerman et al. 2011)
- •Video Magnification (Wu et al. 2012)
- •Summary & Conclusion
- •Questions & Discussion


Photobios (Shlizerman et al. 2011)

Photobio: large image collection of the same personSamples the appearance space of the person over time

Author: Amir Moin 07.05.13

Sample Face Animation

Author: Amir Moin 07.05.13

Generating Face Animations

- Optimizing the order
- Cross dissolving

Optimizing the Order

Choose among a very large image collection (several thousands)

Source

Automatically generated transition

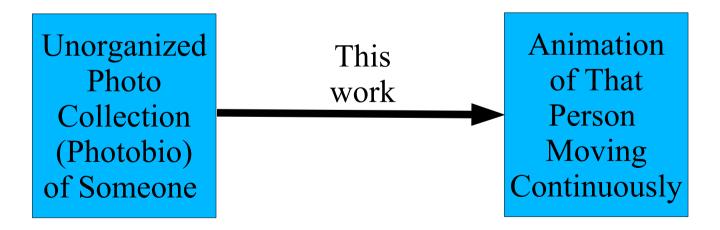
Target

Cross Dissolve (a.k.a. Cross Fade or Linear Intensity Blend)

Gradual transition from one image to anotherFade-out vs. Fade-in

Source: http://en.wikipedia.org/wiki/Dissolve_%28filmmaking%29

19


Author: Amir Moin 07.05.13

The Key Idea of This Work

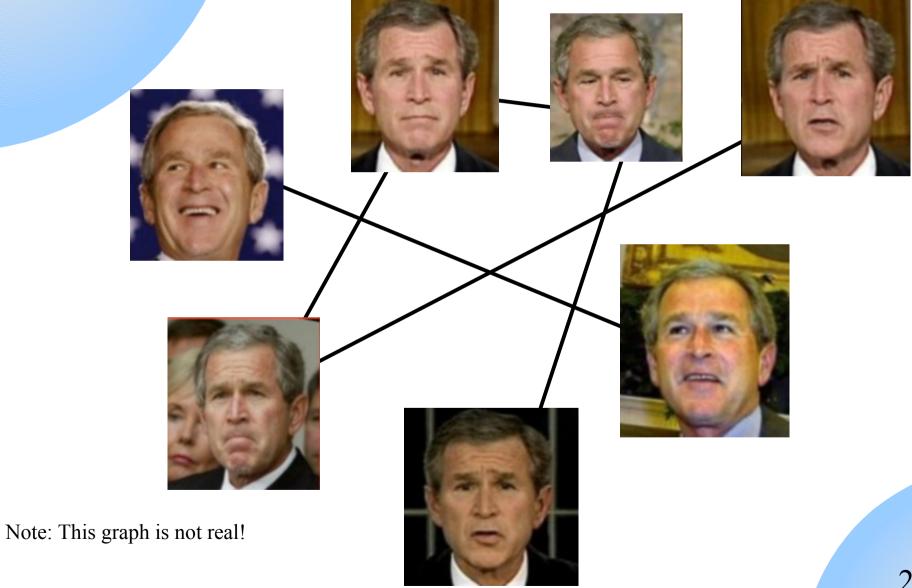
Cross dissolving well-aligned images produces a very strong motion sensation
Not only *illusion* of motion, but *true* motion!

The Aim

To create interactive animated viewing experiences from a person's photobio

The Specific Problem

- •View Interpolation:
 - Rendering a seamless transition between two images


Face appearance space: extremely *high-dimensional*Limited access: only a *sparse* sample space
The exact mapping of each image to pose, expression, etc. is not known!

The Face Graph

Note: This graph is not real!

Author: Amir Moin 07.05.13

The Face Graph

Author: Amir Moin 07.05.13

The Face Graph

- •Nodes: Face Images
- •Edges: Relative distances (dissimilarities)
- •Problem: smooth transition between well-aligned images
- •Equivalent to traversing the shortest path on the face graph

How to Find the Distances?

Comparing the face images!

27

Author: Amir Moin 07.05.13

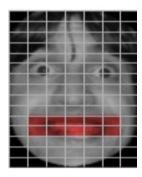
The Pre-Processing Pipeline

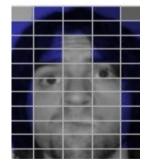
•Face detection

- Locating eyes, nose, mouth, hair
- Ignore photos with low detection confidence

•Pose detection

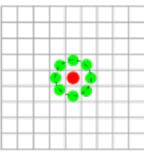

- Aligning to a 3D template model
- Warping to frontal views


Comparing Images to Find Distances


- •Local Binary Patterns (LBP) Histograms
- •Already proven to be useful for:
 - Image classification
 - Face recognition
 - Expression identification
 - Etc.

Local Binary Pattern (LBP) Histograms

Divide an image to a grid of cells
Convert each pixel in a cell to a binary code



How to Calculate the Per-Pixel Binary Code?

Compare each pixel to its 8 neighbor pixelsFor each neighbor pixel:

- if brighter than the center pixel $\rightarrow 1$
- if darker than the center $pixel \rightarrow 0$

• 8-digits binary code for each pixel in a cell

Local Binary Pattern (LBP) Histograms

The histogram of these codes for each cell is the descriptor of that cell.

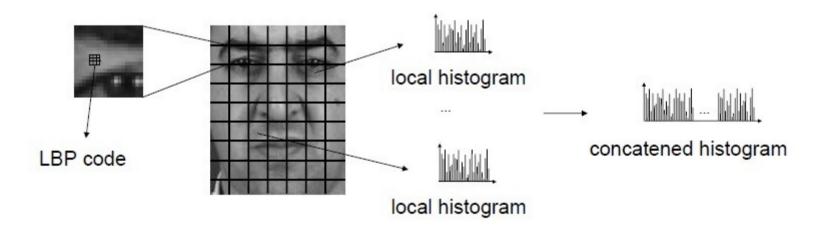


Image Source: http://www.intechopen.com/source/html/17176/media/image24.jpg

Author: Amir Moin 07.05.13

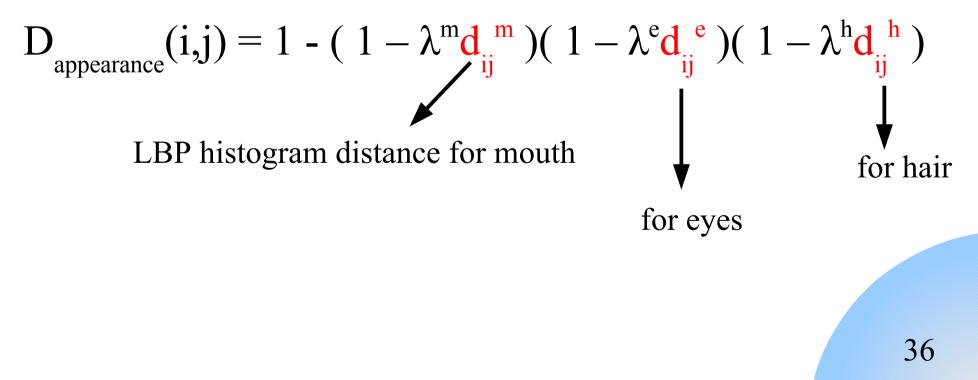
Face Distances

•Combination of difference in:

- Appearance
- Pose
- Time (if timestamps are available)

The Appearance Difference of Face Images i and j

Distance between the corresponding descriptors in face images i and j
Normalized using a robust logistic function


$$D_{\text{appearance}}(i,j) = 1 - (1 - \lambda^{m} d_{ij}^{m})(1 - \lambda^{e} d_{ij}^{e})(1 - \lambda^{h} d_{ij}^{h})$$

Author: Amir Moin 07.05.13

The Appearance Difference of Face Images i and j

$$D_{\text{appearance}}(i,j) = 1 - (1 - \lambda^{m} d_{ij}^{m})(1 - \lambda^{e} d_{ij}^{e})(1 - \lambda^{h} d_{ij}^{h})$$
LBP histogram distance for mouth

The Appearance Difference of Face Images i and j

Author: Amir Moin 07.05.13

The Appearance Difference of Face Images i and j

$$D_{\text{appearance}}(i,j) = 1 - (1 - \lambda^{m} d_{ij}^{m})(1 - \lambda^{e} d_{ij}^{e})(1 - \lambda^{h} d_{ij}^{h})$$

Weights for the regions

The Appearance Difference of Face Images i and j

$$D_{\text{appearance}}(i,j) = 1 - (1 - \lambda^{m} d_{ij}^{m})(1 - \lambda^{e} d_{ij}^{e})(1 - \lambda^{h} d_{ij}^{h})$$

Weights for the regions

$$\lambda^{\rm m} = 0.8, \, \lambda^{\rm e} = 0.1, \, \lambda^{\rm h} = 0.1$$

Author: Amir Moin 07.05.13

Face Distances

•Combination of difference in:

- Appearance: D_{appearance}(i,j)
- Pose: $D_{yaw}(i,j)$, $D_{pitch}(i,j)$
- Time (if timestamps are available): D_{time}(i,j)
- For pose and time \rightarrow absolute values

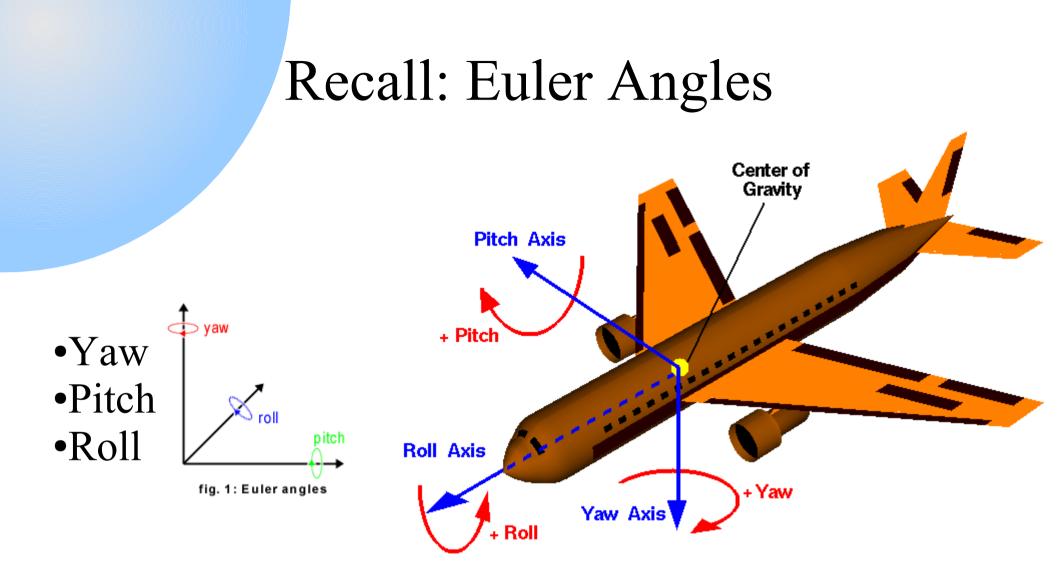


Image Sources: http://www.gameprogrammer.net/delphi3dArchive/viewing.htm http://copterix.perso.rezel.net/wp-content/uploads/2011/04/rotations1.gif

Author: Amir Moin 07.05.13

CVfCG: Illusion of Motion

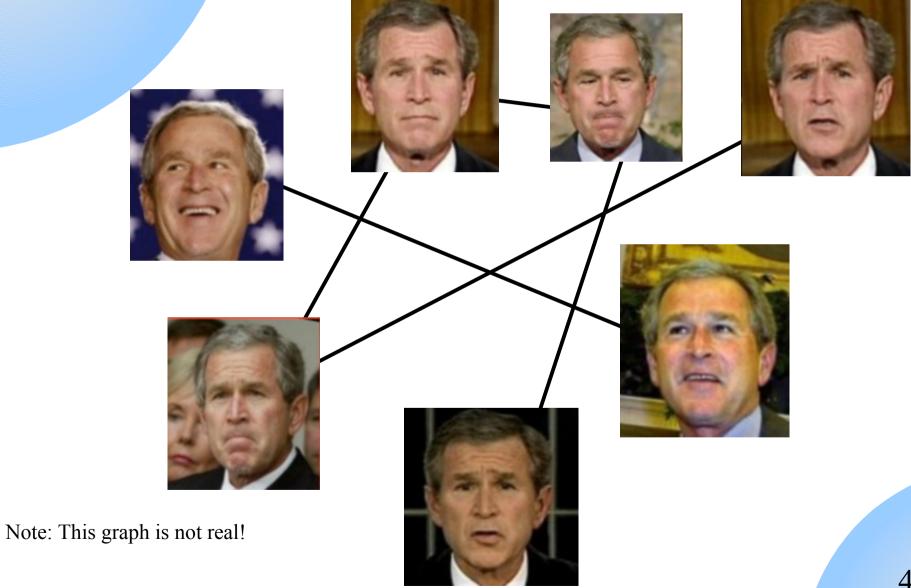
40

The Face Graph

•Face images i and $j \rightarrow Nodes i$ and j•Edge (i,j) has weight D(i,j) defined as:

 $D(i,j) = [1 - \prod_{s \in \{appearance, yaw, pitch, time\}} (1 - D_s(i,j))]^{\alpha}$

The number of in-between images \rightarrow the α parameter


Using The Face Graph

Smooth continuous image transitions \equiv Traverse the shortest path on the face graph

•Dijkstra's algorithm

The Face Graph

Author: Amir Moin 07.05.13

What do we have? What do we need?

We have got: a proper sequence of images
We need: a way to render smooth & compelling transitions from one photo to the next

A Classic Solution: Morphing

- •Change (morph) one image to another through a seamless transition
 - E.g. one person turning to another one

A morph from George W. Bush to Arnold Schwarzenegger Source: http://en.wikipedia.org/wiki/Morphing

Author: Amir Moin 07.05.13

CVfCG: Illusion of Motion

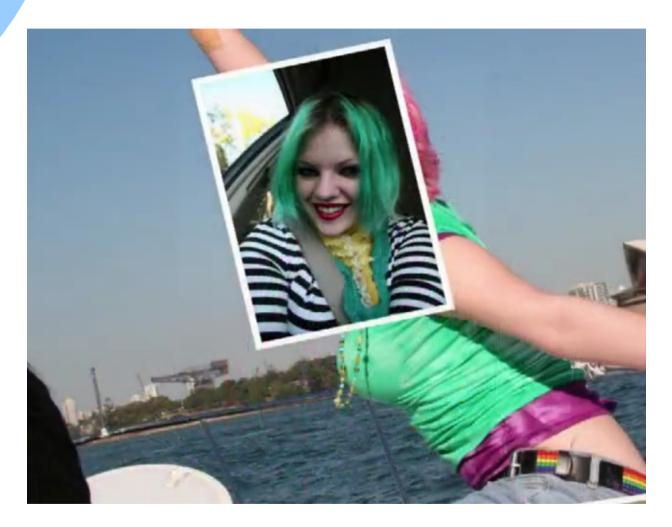
45

A Simpler Solution: Cross Dissolve (a.k.a. Cross Fade)


Fade-out one image and fade-in another one simultaneously.

$$I_{out}(t) = (1-t) I_{in1} + t I_{in2}$$

Author: Amir Moin 07.05.13


A Simpler Solution: Cross Dissolve (a.k.a. Cross Fade)

Fade-out one image and fade-in another one simultaneously.

Author: Amir Moin 07.05.13

Strong Motion Effect by Cross Dissolve

Author: Amir Moin 07.05.13

How Could Cross Dissolve Produce Motion?

•Edge Motion:

• *Image edges* move smoothly, with nonlinear *ease-in ease-out* dynamics

•Physical illumination changes:

• The light source direction moves realistically during the transition

Basics: Image Edges

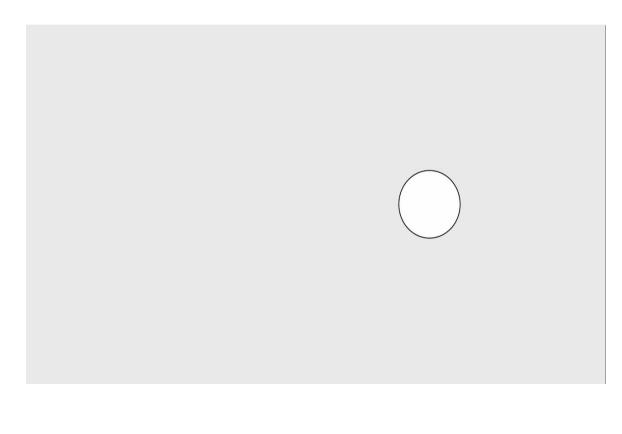
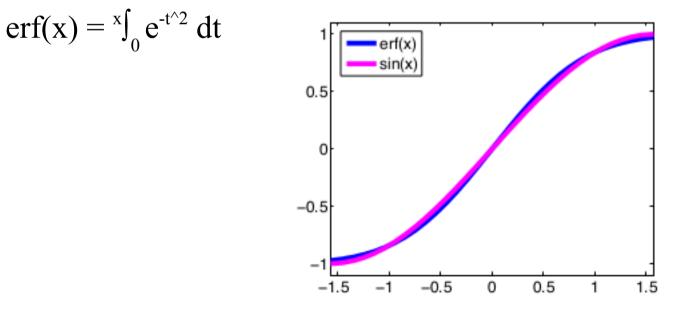

Points on a digital image where the brightness changes sharply (i.e. has discontinuities)

Image Source: http://en.wikipedia.org/wiki/File:EdgeDetectionMathematica.png

Basics: Ease-in vs. Ease-out

Few drawings \rightarrow faster action More drawings \rightarrow slower action



Video Source: http://www.youtub e.com/watch?v=yQ-NC0bHTYs

Author: Amir Moin 07.05.13

Edge Approximation

Approximate the image edges by the sine function

Author: Amir Moin 07.05.13

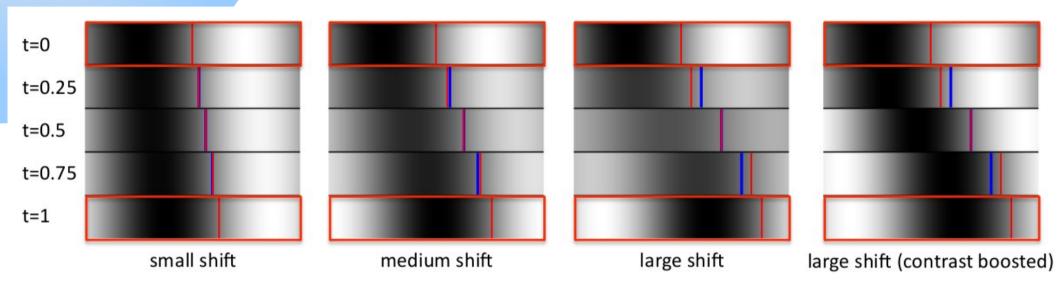
Edge Motion

•Cross dissolving 2 images (signals) represented by α sin(mx) sin(mx+d)

- d is phase shift (spatial translation)
- α is amplitude scale

 $I_{out}(t) = (1-t) I_{in1} + t I_{in2}$ (1-t) $\alpha \sin(mx) + t \sin(mx+d) = c \sin(mx+k)$ t $\in [0,1]$

Author: Amir Moin 07.05.13


Important Results

 $k = \arctan(t \text{ sind } / ((1-t)\alpha + t \cos d))$

•(1) Phase k is smoothly interpolated. The speed of the motion is determined by phase k.

•(2) k is not linear, but, it perfectly resembles the ease-in ease-out curve (i.e. more believable animations)!

Cross Dissolve vs. Linear Motion

- •Location of the edges: in cross dissolve \rightarrow red
 - in linear motion \rightarrow blue
- Larger shifts → non-linear ease-in ease-out + decrease in contrast
 Small shifts → imperceptible

Important Results (3)

(1-t) $\alpha \sin(mx) + t \sin(mx+d) = c \sin(mx+k)$

•Low frequency edges can move relatively large distances, while high frequency edges can move only slightly.

Cross Dissolve vs. Linear Motion

Translation By 2 Pixels

Cross Dissolve

Linear Motion

Author: Amir Moin 07.05.13

Important Results (4)

(1-t) $\alpha \sin(mx) + t \sin(mx+d) = c \sin(mx+k)$

•When the phase offset reaches π , the edge disappears entirely. This fading away during a transition is called ghosting).

Important Results (5)

$$c^{2} = \alpha^{2}(1-t^{2}) + t^{2} + 2(1-t)\alpha t \cos d$$

 According to c in the above equation: drop in amplitude of sine → gradual decrease in image contrast

Important Results (6)

The motion effect only works for edges with approximately the same frequency.

Interpolation of Light Sources

In addition to edge motion, cross dissolve could also produce very convincing illumination changes:

- The light source direction appears to move realistically!
- Mathematical details available in the paper

Automation

- •The pipeline is almost fully automated
- •Exception: more than one person on a photo
 - Future work: using face recognition techniques

Implementation

- •Google Picasa 3.8
 - The Face Movies feature
- •Latest: Picasa 3.9
- •Install on GNU/Linux using WINE

Outline

- Introduction to illusory motion
- •Exploring Photobios (Shlizerman et al. 2011)
- •Video Magnification (Wu et al. 2012)
- Summary & Conclusion
- •Questions & Discussion

Video Magnification (Wu et al. 2012)

Revealing subtle changes in the videos that are hard or impossible to see with the naked eyes

- Color variation
- Low-amplitude motions (both periodic and non-periodic)

- •The human visual system \rightarrow limited spatiotemporal sensitivity
- •Many signals below this limit \rightarrow still useful!

Applications of Video Magnification

- •Medicine
- •Military
- •Architecture
- •Law Enforcement
- •Etc.

Example 1

Example 2

Author: Amir Moin 07.05.13

Example 3

Source (Courtesy of Winchester Hospital. Do not copy)

Hospital monitor

The Key Idea of This Work

A combination of spatial and temporal video processing techniques can amplify subtle variations
To reveal important aspects of the world around us

The Approach

•Consider the time series of color values at any spatial location (i.e. pixel)

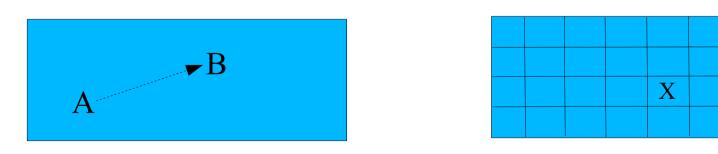
•Amplify variation in a given temporal frequency band of interest

Basics: Temporal vs. Spatial Frequency

Temporal Frequency: No. of occurrences per secondSpatial frequency



Image source: http://sharp.bu.edu/~slehar/fourier/fourier.html


Author: Amir Moin 07.05.13

Basics: Fluid Dynamics

- •Sub-discipline of Fluid Mechanics
- •Deals with fluid flow, i.e. fluids (liquids & gases) in motion
- •Sub-disciplines: aerodynamics, hydrodynamics, etc.

2 Main Specifications for Fluid Flow in Fluid Dynamics

- •Lagrangian vs. Eulerian
- •Lagrangian: Track a particle along its path
- •Eulerian: How much fluid passes through a specific point (or cell)

Author: Amir Moin 07.05.13

Analogy: The Lagrangian Specification

Image Source:

http://us.123rf.com/400wm/400/400/unnibente/unnibente1112/unnibente111200005/11679189 -a-girl-sitting-in-a-small-boat-on-a-river-or-lake.jpg (with modifications)

76

Author: Amir Moin 07.05.13

Analogy: The Lagrangian Specification

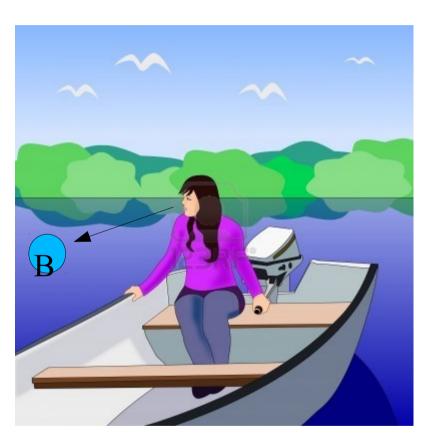


Image Source:

http://us.123rf.com/400wm/400/400/unnibente/unnibente1112/unnibente111200005/11679189 -a-girl-sitting-in-a-small-boat-on-a-river-or-lake.jpg (with modifications)

77

Author: Amir Moin 07.05.13

Analogy: The Eulerian Specification

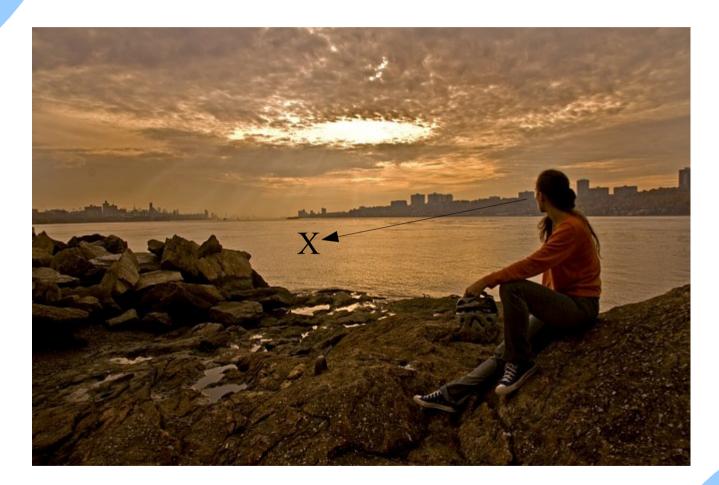
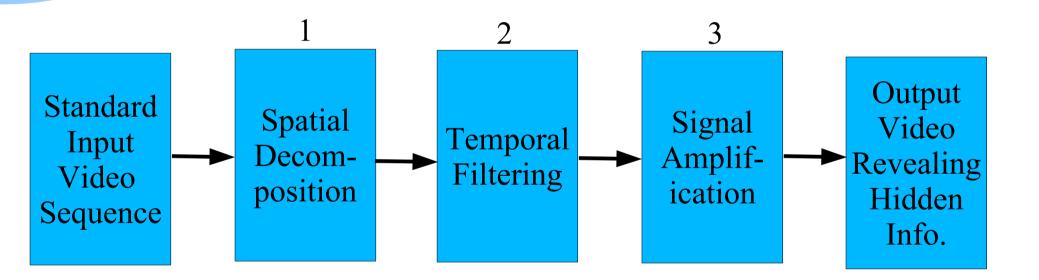


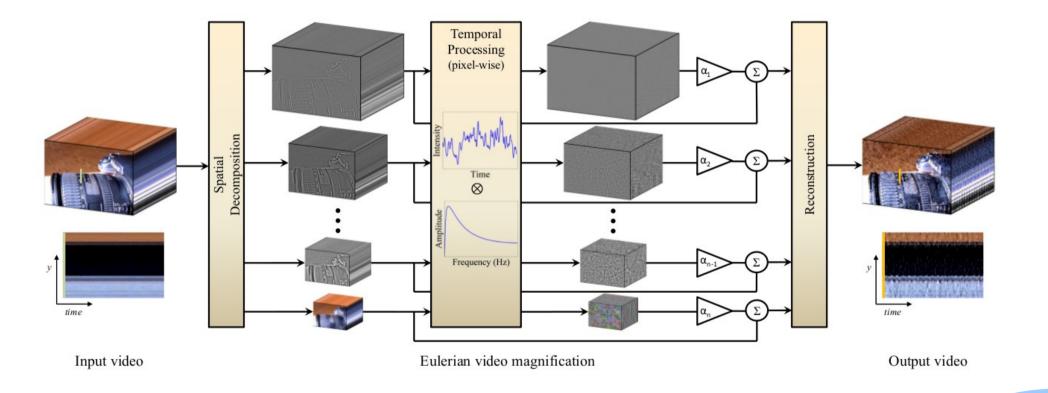
Image Source: http://8020.photos.jpgmag.com/1227591_193457_e6f5212c66_p.jpg (with modifications)

Author: Amir Moin 07.05.13

Previous Related Works


Lagrangian approachesAccurate motion estimationComputationally expensive

This Work


•Eulerian approach: Each pixel is processed independently

- Treat each pixel as a time series and apply signal processing to it
- •Do not explicitly estimate motion
- •Exaggerate motion by amplifying temporal color changes at **fixed positions**
- •Robust & real time

Eulerian Video Magnification

Eulerian Video Magnification

Author: Amir Moin 07.05.13

CVfCG: Illusion of Motion

82

1. Spatial Decomposition

- •Decompose the video sequence into different spatial frequency bands
- •These bands might be magnified differently
 - Might have different signal-to-noise ratios
 - Might have spatial frequencies for which the linear approximation used in motion magnification does not hold

2. Temporal Filtering

- •Increase the signal-to-noise ratio
- •On each spatial band
- •Extract the frequency band of interest(Fourier Theory)
 - E.g. if 24 240 beats per minute → only select frequencies of 0.4 4 Hz

3. Signal Amplification

- •Multiply the signal by an amplification factor α
- •Specified by the user
- •Add the magnified signal to the original \rightarrow final output obtained

Spatiotemporal Coherency

- •Natural videos are spatially and temporally smooth
- •Filtering performed uniformly
- •Therefore, coherency implicitly maintained

How temporal processing produces motion magnification?

•I(x,t) = the image intensity at position x at time t

Author: Amir Moin 07.05.13

How temporal processing produces motion magnification?

I(x,t) = the image intensity at position x at time t
I(x,0) = f(x)
I(x,t) = f(x+δ(t))
Displacement function

How temporal processing produces motion magnification?

- •I(x,t) = the image intensity at position x at time t •I(x,0) = f(x)
- •I(x,t) = f(x+ $\delta(t)$)

•The goal of motion magnification is to synthesize the signal:

 $I(x,t) = f(x+\delta(t)) = f(x + (1+\alpha)\delta(t))$

•for some amplification factor α .

Lagrangian vs. Eulerian Methods

- •Lagrangian methods: support larger amplification factors
- •Eulerian method: smoother structures & small amplifications

Outline

- Introduction to illusory motion
- •Exploring Photobios (Shlizerman et al. 2011)
- •Video Magnification (Wu et al. 2012)
- •Summary & Conclusion
- •Questions & Discussion

Summary: Exploring Photobios

Generating motion from well-aligned static images using cross dissolving.
Not only illusion of motion, but real motion!

Summary: Video Magnification

•Revealing and magnifying very small motions & variations using temporal signal processing
•Eulerian (in contrast to Lagrangian) approach → robust and real-time

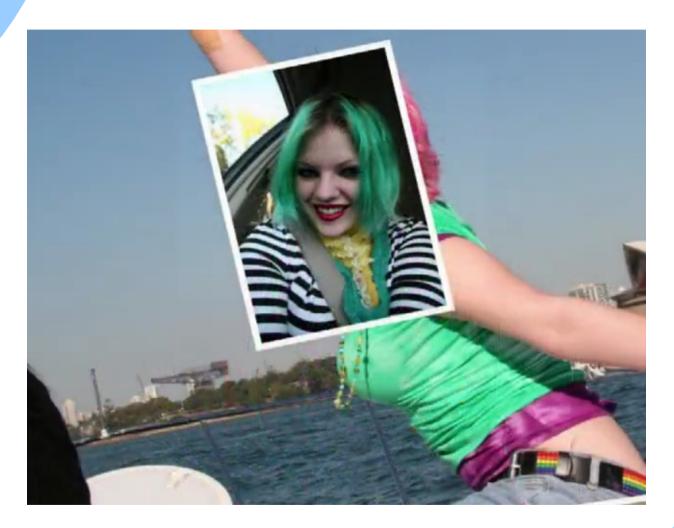
Conclusion: Similarity

•Both somehow produce kind of motion

- The former: motion from static images
- The latter: Make very small motions visible

Conclusion: Difference

The former: no motion has been occurred
In the latter: motion has been occurred, invisible to the naked eye


Conclusion: Idea for Future Work

Idea: Using a combination, e.g.:

Generate motion by Face Movies Exaggerate and magnify the motion using the Eulerian Video Magnification approach

Author: Amir Moin 07.05.13

Conclusion: Idea for Future Work

Author: Amir Moin 07.05.13

Questions & Discussion

Acknowledgements: Thanks James TompkinsThanks for your patience!

•References:

- Exploring Photobios, Kemelmacher-Shlizerman et al., SIGGRAPH 2011
- Eulerian Video Magnification, Wu et al., SIGGRAPH 2012