Computer Vision for Computer Graphics (CVfCG)

Patch Correspondence

Max Planck Institute for Informatics (MPII) Saarbrücken

Presenter: Nataliya Dedik dediknat@gmail.com

Date: 28 May 2013

Outline

- Previous talks and connections
- Overview of patch correspondence problem
- Two papers

- PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing (SIGGRAPH'09) [1]

- NRDC: Non-Rigid Dense Correspondence with Applications for Image Enhancement (SIGGRAPH'11) [2]

- Summary, conclutions and connections
- Questions and discussions

Previous talks and connections

- Key ideas of previous talks:
 - recognize human actions at a distance
 - inserting new objects into existing photographs
- Connections to present works:
 - working with images
 - nearest-neighbour framework
 - correspondence problem, stitching
 - color value changes and optical flows, filtering

Overview

- Correspondence problem
 - occurrence of problem
 - basic methods
 - typical application examples

Source: http://en.wikipedia.org/wiki/Correspondence_problem

Outline

- Previous talk and connections (Illusion of Motion)
- Overview of patch Correspondence problem
- Two papers

- PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing (SIGGRAPH'09) [1]

- NRDC: Non-Rigid Dense Correspondence with Applications for Image Enhancement (SIGGRAPH'11) [2]

- Summary, conclutions and connections
- Questions and discussions

Problem description

- Digital image techniques
 - Image retargeting
 - Image completion
 - Image reshuffling
- Essential: user interaction
 - Flexibility
 - Quickness
- Most approaches meet only one of criterias

(a) input

(a) input

(b) hole and guides

(c) completion result

(a) input

(b) result

Nearest-Neighbor Field (NNF)

- Repeated search for similar patches core element
- Key observations:
 - Dimensionality of offset space
 - patch offsets vs patches
 - Natural structure of images
 - neighboring pixels have coherent matches
 - The law of large numbers

– large number of random sampling will yield good guesses

PatchMatch: previous related works

- Texture synthesis and completion
 - Non-parametric texture synthesis
 - Completion problem as a global optimization
 - Patch optimization
 - Parallel update schemes
 - Global formulation using Loopy Belief Propagation

- Relatively slow
- Only on small images

PatchMatch: previous related works

- Nearest neighbor search methods
 - Local propagation technique
 - Ashikhmin [2001]
 - k-coherence technique
 - Tong et al. 2002
 - Required to escape local minima
 - Compare to kd-trees

PatchMatch: previous related works

- Control and interactivity
 - user control by initializing the pixels with desired colors
 - Ashikhmin [2001]
 - "guiding layers"
 - Hertzmann et al. [2001]
 - structures that cross both inside and outside the missing region
 - [Sun et al. 2005]
 - deform image feature curves
 - Fang and Hart [2007]
 - interactive completion system
 - Pavic et al. [2006]

Approximate nearest-neighbor algorithm

- Three steps of algorithm:
- 1) Initialization
 - Each pixel is given a random patch offset as initialization.
 - Assign random values
 - Use prior information
 - Coarse-to-fine gradual resizing process
 - Initial guess upscaled from the previous level
 - sometimes get trapped in local minima
 - Random initialization

Approximate nearest-neighbor algorithm

- 2) Propagation
 - Each pixels checks if the offsets from neighboring patches give a better matching patch.
 - Adopt neighbor's patch offset.

Approximate nearest-neighbor algorithm

- 3) Random search
 - searchs for better patch offsets
 - search radius the size of the image, halved each time until it is 1.
- Criteria for halting fixed number of times

Overall algorithm

- 1. Initializing pixels with random patch offsets
- 2. Checking if neighbors have better patch offsets
- 3. Search in concentric radius around the current offset for better patch offsets
- 4. Go to Step 2 until converge

Analysis for a synthetic example

- Analyzing the convergence to exact NNF
- Challenging synthethic test case
- Distinctive region R will be correct via propagation
- Worst case for matching

Analysis for real-world images

- Error analysis
 - Inputs and outputs of our editing operations
 - Stereo pairs and consecutive video frames
 - Images from the same class in the Caltech-256 dataset
 - Pairs of unrelated images
- Faster than kd-tree
- Uses less memory

	Time [s]		Memory [MB]	
Megapixels	Ours	kd-tree	Ours	kd-tree
0.1	0.68	15.2	1.7	33.9
0.2	1.54	37.2	3.4	68.9
0.35	2.65	87.7	5.6	118.3

Editing tools

- Bidirectional similarity synthesis approach
 - Completeness

- Coherence

Editing tools

- Image collages
- Automatic cropping
- Reshuffling
- Importance masks
- Define constraints
- "copy and paste"
- Scaled uniformly or non-uniformly

Search space constraints

- Image completion is challenging
 - Inconsistencies
 - Boundaries
 - Limiting the search space

Deformation constraints

• For user to mark semantically important regions

(b) retargeted

(c) with constraints

Figure 6: Free lines and uniform scale constraints.

Deformation constraints

• Model constraints

Hard constraints (reshuffling)

- Fixing the NN fields
- After each iteration correct offsets
- Three options to user
 - Swap
 - Interpolate
 - Clone

Figure 8: Examples of reshuffling.

Local structural scaling

(a) building marked by user

(b) scaled up, preserving texture

(c) bush marked by user

(d) scaled up, preserving texture.

Figure 9: Examples using local scale tool.

Results

Figure 10: Retargeting. From left: (a) Input image, (b) [Rubinstein et al. 2008], (c) [Wang et al. 2008], (d) Our constraints, (e) Our result.

Figure 11: Retargeting: (a) Input image, annotated with constraints, (b) [Rubinstein et al. 2008], (c) Our output.

Results

Pros and Cons

+

- Optimize an energy function without neighborhood term.
- Has no explicit generative model, but uses coherency in the data
- Sufficient for practical synthesis applications
- Avoids the expensive computations

- Poor convergence properties
- "Ghosting" or "feathering" artifacts

Future work

- k nearest neighbors may allow the k-coherence strategy
- Optimal random sampling pattern and halting criteria functions of the inputs
 - -> exploring these tradeoffs:
 - New applications
 - Additional speed gains
- For videos
- For collages
- On 3D geometry, 4D animation or volumetric simulation sequences
- Object detection and tracking

Outline

- Previous talk and connections (Illusion of Motion)
- Overview of patch Correspondence problem
- Two papers

- PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing (SIGGRAPH'09) [1]

- NRDC: Non-Rigid Dense Correspondence with Applications for Image Enhancement (SIGGRAPH'11) [2]

- Summary, conclutions and connections
- Questions and discussions

Key ideas

- Correspondence methods for two scenarios:
 - Close in time/view point
 - Difference in view point
- Third scenario:
 - Share common content
 - Factors of difference

Key ideas

- Color transfer: reference -> source
- Automatically recover a set of dence correspondances
- Global non-linear parametric color transformation model

• Dense and robust

Previous related work

- Correspondance:
- Initial Correspondence methods
 - Stereo matching
 - Optical flow
 - Image alignment
- Features are robust to:
 - typical appearance variations
 - 3D transformations
- Geometric filtering steps
 - Less effective

SIFT

[Pitié et al. 2007]

[Lukas and Kanade 1981]

Our result

Previous related work

- Large-displacement optical flow
- Non-rigid matching of different scenes
- Impressive results
- Not robust to changes
- Family of methods: start with feature matches -> "densify"
 - Objects with similar appearances
 - Scale not well
- Generalized PatchMatch (GPM)
 - Coarse-to-fine scheme
 - Iterative tonal
 - Color correction
 - Aggregation
 - Local narrowing

- Coarse-to-fine algorithm
 - nearest-neighbor search
 - region aggregation
 - color transform fitting
 - search range adjustment

Figure 3: The four steps of our correspondence algorithm - these are repeated several iterations at multiple scales.

- Nearest-neighbor search NNF from source to reference
- We use:
 - Small overlapping patches
 - Generalized PatchMatch extended to support
 - Robust color transformations
 - Sub-pixel translation
 - Gaussian weighted mean and variance
 - Mipmaps

- Aggregating consistent regions
- We use:
 - Consistency criterion -> Accept regions according to coherence error
 - Define adjacent patches as consistent -> Normalize -> Consistency error formula -> Compute the connected components

- Global color mapping
- Purposes:
 - improve the performance of the correspondence algorithm
 - produce the final result
- We use:
 - Three monotonic curves
 - Piecewise cubic spline with 7 breaks
 - Quadratic programming
 - Handle saturation changes -> matrix->project pixel colors and optimize for the scale factors

- Search constraints
- 8 additional degrees of freedom
- Problem: incorrect matches
- Overcome: limit the search range of transformations
 - Consistency criterion
 - Narrow the search range

Evaluation

- Time depends on:
 - Interpolation methods
 - Number of GPM iterations
- Results:
 - Immediate feedback
 - Improvement of correspondance

Evaluation: Correspondence evaluation

- Compare our algorithm with
 - SIFT-Flow and Generalized PatchMatch
 - sparse SIFT correspondence

Evaluation: Correspondence evaluation

• Evaluation the accuracy of correspondence quantitatively

Evaluation: Correspondence evaluation

• Comparison with the Co-recognition approach

Evaluation: Global color transfer evaluation

• Comparison to the state-of-the-art method

Evaluation: Limitations and future work

- Very large smooth regions
- Object appears over different background
- Two or more very different color models
- Will handle only saturation/desaturation

Applications

Local color transfer

Applications

• Deblurring

(a) Sharp example

(b) Blurry

(c) [Cho and Lee 2009]

(d) [Levin et al. 2011]

(e) Our

Applications

Mask transfer

Future work

- For videos
- On 3D geometry,
- 4D animation or volumetric simulation sequences
- Computer graphics and vision applications that rely on correspondence methods.

Outline

- Previous talk and connections (Illusion of Motion)
- Overview of patch Correspondence problem
- Two papers

- PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing (SIGGRAPH'09) [1]

- NRDC: Non-Rigid Dense Correspondence with Applications for Image Enhancement (SIGGRAPH'11) [2]

- Summary, conclutions and connections
- Questions and discussions

Summary: PatchMatch

- Image editing tools using a new randomized algorithm for quickly finding approximate nearest-neighbor matches between image patches.
 - Image retargeting
 - Completion
 - Reshuffling
- Interactivity is essential

Summary: NRDC

- Recovering reliable local sets of dense correspondences between two images with some shared content
 - Dense local matching
 - Robustness to outliers
- Applications:
 - Adjusting the tonal characteristics to match a reference image
 - Mask transferring
 - Kernel estimation for image deblurring

Connections

- Connect to correspondence problem
- PatchMatch algorithm
- Coarse-to-fine scheme
- Tools for image editing
 - Retargeting, completion, reshuffling
 - Tonal characteristics, transfer mask, deblurring
- Colors and flows
- Can be used for videos editing in future

Conclusion

- Acknowledgements: Thanks to James Tompkin
- References:
 - [1] Connelly Barnes, Eli Shechtman, Adam Finkelstein, Dan B Goldman PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing. ACM Transactions on Graphics (Proc. SIGGRAPH), August 2009.
 - [2] Yoav HaCohen, Eli Shechtman, Dan B. Goldman, Dani Lischinski. NRDC: Non-Rigid Dense Correspondence with Applications for Image Enhancement. ACM Transactions on Graphics (Proc. SIGGRAPH), August 2011.

Thank you for your attention!

• Questions and discussion

