

Graphics, Vision and Video Group

Computer Vision for Computer Graphics

Prof. Dr. Christian Theobalt Dr. Christian Richardt

Summer Semester 2014

max planck institut

Coordinates

- MPI-INF E1 4, room 019
- Thursdays, 14:15 16:00
- Mailing list:
 - itvc@lists.mpi-inf.mpg.de
 - https://lists.mpi-inf.mpg.de/listinfo
- Website:
 - http://gvv.mpi-inf.mpg.de/teaching/gvv_seminar_2014/

max planck institut

Organisers

- Christian Theobalt
 - MPI-INF, room 228
 - theobalt@mpi-inf.mpg.de
- Christian Richardt (organisational contact)
 - MPI-INF, room 215
 - richardt@mpi-inf.mpg.de

Formal requirements in a nutshell

- Your presence is required!
 - We will monitor attendance.
- Read all the papers
- Submit questions for and participate in discussion
- One topic is "Your Topic" (2 papers):
 - Deliver a 30 minute presentation
 - Write a 5–7 page report
- Grade: talk 30%, discussion 30%, report 40%

ALL THE PAPERS

max planck institut

Prior knowledge

- Not for beginners in visual computing
- You need experience in:
 - computer vision
 - computer graphics
 - geometric modeling
 - basic numerical methods
- Examples: you should know how ...
 - ... a camera is modeled mathematically
 - 3D transformations are described
 - ... a system of equations is solved, etc.

max planck institut informatik

Registration

- Register by email <u>richardt@mpi-inf.mpg.de</u>
 - Matriculation number, degree program, semester, previous courses or experience (if you haven't done this yet)
- Fill in sign-up sheet
- Topic assignment:
 - Send a list of 3 topics (in order of preference) until
 Monday, 21 April 2014
 - Slots are filled in first-come, first-served fashion
 - We will try to accommodate wishes as much as possible
 - Topics will be assigned on Tuesday, 22 April 2014
- Lastly register in HiS POS in 2–4 weeks (email to come)

max planck institut

Organisation

- 18 topics to choose from
 - Listed on seminar website
 - Introduced in detail later today
- 10 presentation slots in total:
 - First presentation: Thursday, 8 May 2014
 - Each week until Thursday, 24 July 2014 (including)
- Each topic has a supervisor:
 - You can ask questions by e-mail at any time
 - about your topic, the papers, your presentation and report
 - Up to one office hour per week

max planck institut

Presentations

- Same order as on seminar website
 - Slots can be swapped if necessary: talk to other participants first
- About 30 minutes long:
 - About 5 minutes:
 - summary of previous week
 - finding themes that join the two weeks
 - About 25 minutes:
 - presentation of the two papers
 - again finding the common links between the papers
- Direct public feedback from seminar organisers after talk

Suggested presentation preparation

- Schedule two meetings with your supervisor:
 - First meeting: 2–3 weeks before presentation:
 - Read the papers for this meeting
 - Ask questions if you have difficulties
 - Discuss your plans for presentation
 - Second meeting: 1 week before presentation:
 - Prepare a preliminary presentation
 - We can provide feedback
- It is your responsibility to arrange the meetings
- Do not rely on them proving last-minute feedback

max planck institut

Discussion

- 45–60 minutes long
- Day before the seminar:
 - Submit 2+ questions for discussion to <u>richardt@mpi-inf.mpg.de</u>
 - Important: your contribution will be marked
- At the seminar:
 - One person chosen at random leads the discussion
 - Will get digest of questions submitted before the seminar
 - Gives summary of the strengths and weaknesses
 - Moderates and guides discussion
 - Raises open questions that remain
 - This will also be marked

max planck institutinformatik

Report

- 5–7 page summary of the major ideas in your topic:
 - 3–4 pages on the two papers
 - 3–4 additional paper references
 - 2–3 pages with your own ideas, for example:
 - Limitations not mentioned in the paper + sketch of potential solution
 - Try to suggest improvements
 - Novel ideas based on content described in the papers
 - Can be the result of the discussion after your presentation
- The idea is that you get a feeling for your specific topic surpassing the level of simply understanding a paper.

Report

- Due date: Thursday, 21 August 2014
 (4 weeks after last seminar)
- Send PDF by e-mail
- We will provide a LaTeX template on seminar website
 - If you use other software, make it look like the LaTeX template
 - this is your responsibility
 - Strongly recommended to learn LaTeX

max planck institut informatik

Grading

- Presentation (overall: 30%)
 - Form (30%): time, speed, structure of slides
 - Content (50%): structure, story line and connections, main points, clarity
 - Questions (20%): answers to questions
- Discussion (overall: 30%)
 - Submitted questions (33%): insight, depth, inquisition
 - Participation (33%): willingness, debate, ideas
 - Moderation (33%): strengths and weaknesses, integration of questions
- Report (overall: 40%)
 - Form (10%): diligence, structure, appropriate length
 - Context (20%): the big picture, topic in context
 - Technical correctness (30%)
 - Discussion (40%): novelty, transfer, own ideas / in own words

max planck institut informatik

Benefits to you

- Practise important skills in research
 - Read and understand technical papers
 - Present scientific results and convince other people
 - Analyse and develop new ideas through discussions
- Discussion is essential:
 - If you don't participate, you miss a big chance
 - Most ideas are developed in discussions about other papers
- Therefore:
 - Prepare for the seminar classes!
 - Participate actively in the discussions!
 - Benefit from the interaction in the group!

What this seminar is not ...

- A course to just sit and listen
 - Come prepared
 - Read all papers before class, think about problems,
 submit questions and discuss them in class
 - Your participation benefits everyone
 - the group makes the seminar
- "Cheap" 8 credit points
 - Don't underestimate the time it takes to understand a paper,
 prepare a talk, and write a report
 - So take it seriously!

max planck institut informatik

Schedule

- 17 April Introduction < You are here</p>
- 24 April Lectures:
 - "How to read an academic paper"
 - "How to give a good talk"
- 8 May First presentation by a student
- ... 8 more weekly presentations
- 24 July Last presentation by a student
- 21 August Report deadline

Introduction to the topics

CV4CG 2014 – First Meeting – 17 April 2014

max planck institut informatik

CV4CG 2014 – First Meeting – 17 April 2014

Song Hye Kyo

CV4CG 2014 – First Meeting – 17 April 2014

Geometry

• e.g. environment models

[Bokeloh et al., Eurographics 2009]

Appearance

e.g. human appearance models:

[Ma et al., EGSR 2007]

Motion

• e.g. marker-based performance capture:

Computer vision

Low-level vision:

Feature detection & correspondence

Optical flow

Computer vision

- High-level vision:
 - Scene understanding / recognition / reconstruction

Human motion estimation

Object recognition

Multi-view stereo reconstruction

Computer Graphics / Computer Vision

Images
Videos
Sensor data
...

Real world

Geometry
Material

Albedo
Reflectance

Lighting
Physics

Motion
Deformation

Scene model

max planck institut informatik

Topics

- Covering state-of-the-art research papers
- Strong focus on top conferences and journals in computer vision and computer graphics:
 - ACM SIGGRAPH & ACM SIGGRAPH Asia
 - Eurographics
 - IEEE Computer Vision and Pattern Recognition (CVPR)
 - International Conference on Computer Vision (ICCV)
 - European Conference on Computer Vision (ECCV)
 - International Journal of Computer Vision (IJCV)
 - IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)

Dense correspondence

- PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing (Barnes et al., SIGGRAPH 2009)
- Non-Rigid Dense Correspondence with Applications for Image Enhancement (HaCohen et al., SIGGRAPH 2011)

Stereoscopic image editing

- Changing Perspective in Stereoscopic Images (Du et al., TVCG 2013)
- StereoPasting: Interactive Composition in Stereoscopic Images (Tong et al., TVCG 2013)

Image-based editing

- 3-Sweep: Extracting Editable Objects from a Single Photo (Chen et al., SIGGRAPH Asia 2013)
- Interactive Images: Cuboid Proxies for Smart Image Manipulation (Zheng et al., SIGGRAPH 2012)

Image-based editing

- 3-Sweep: Extracting Editable Objects from a Single Photo (Chen et al., SIGGRAPH Asia 2013)
- Interactive Images: Cuboid Proxies for Smart Image Manipulation (Zheng et al., SIGGRAPH 2012)

Intrinsic image decomposition

- <u>User-Assisted Intrinsic Images</u>
 (Bousseau et al., SIGGRAPH Asia 2009)
- Coherent Intrinsic Images from Photo Collections (Laffont et al., SIGGRAPH Asia 2012)

Video stabilisation

- Subspace Video Stabilization (Liu et al., TOG 2011)
- Bundled camera paths for video stabilization (Liu et al., SIGGRAPH 2013)

Multi-perspective panoramas

- Omnistereo: Panoramic Stereo Imaging (Peleg et al., PAMI 2001)
- Megastereo: Constructing High-Resolution Stereo Panoramas (Richardt et al., CVPR 2013)

Depth-based SLAM

- KinectFusion: Real-time Dense Surface Mapping and Tracking (Newcombe et al., ISMAR 2011)
- Real-time 3D Reconstruction at Scale Using Voxel Hashing (Nießner et al., SIGGRAPH Asia 2013)

Multi-view stereo

- Multi-View Stereo Revisited (Goesele et al., CVPR 2006)
- Joint Estimation of Motion, Structure and Geometry from Stereo Sequences (Valgaerts et al., ECCV 2010)

Human pose estimation I

- Fast Articulated Motion Tracking using a Sums of Gaussians Body
 Model (Stoll et al., ICCV 2011)
- Markerless Motion Capture with Unsynchronized Moving Cameras (Hasler et al., CVPR 2009)

Human pose estimation II

- <u>Pictorial Structures Revisited: People Detection and Articulated Pose</u>
 <u>Estimation</u> (Andriluka et al., CVPR 2009)
- Strong Appearance and Expressive Spatial Models for Human Pose Estimation (Pishchulin et al., ICCV 2013)

Human pose estimation III

- Real-Time Human Pose Recognition in Parts from a Single Depth Image (Shotton et al., CVPR 2011)
- The Vitruvian Manifold: Inferring Dense Correspondences for One-Shot Human Pose Estimation (Taylor et al., CVPR 2012)

Performance capture

- Motion Capture Using Joint Skeleton Tracking and Surface Estimation (Gall et al., CVPR 2009)
- Performance Capture from Sparse Multi-view Video (de Aguiar et al., SIGGRAPH 2008)

Shape and reflectance

- Improved Reconstruction of Deforming Surfaces by Cancelling Ambient Occlusion (Beeler et al., ECCV 2012)
- Shading-based Dynamic Shape Refinement from Multi-view Video under General Illumination (Wu et al., ICCV 2011)

Hand pose estimation

- Real-Time Hand-Tracking with a Color Glove (Wang & Popović, SIGGRAPH 2009)
- Interactive Markerless Articulated Hand Motion Tracking using RGB and Depth Data (Sridhar et al., ICCV 2013)

Supervisor: Srinath CV4CG 2014 – First Meeting – 17 April 2014

Hand pose estimation

- Real-Time Hand-Tracking with a Color Glove (Wang & Popović, SIGGRAPH 2009)
- Interactive Markerless Articulated Hand Motion Tracking using RGB and Depth Data (Sridhar et al., ICCV 2013)

Topology-adaptive meshes

- Topology-Adaptive Mesh Deformation for Surface Evolution, Morphing, and Multiview Reconstruction
 (Zaharescu et al., PAMI 2011)
- Progressive Shape Models
 (Letouzey and Boyer, CVPR 2012)

Supervisor: Nadia

Facial performance capture I

- High-Quality Passive Facial Performance Capture using Anchor Frames (Beeler et al., SIGGRAPH 2011)
- Reconstructing Detailed Dynamic Face Geometry from Monocular Video (Garrido et al., SIGGRAPH Asia 2013)

Supervisor: Pablo

CV4CG 2014 – First Meeting – 17 April 2014

Facial performance capture II

- 3D Shape Regression for Real-time Facial Animation (Cao et al., SIGGRAPH 2013)
- Online Modeling For Realtime Facial Animation (Bouaziz et al., SIGGRAPH 2013)

Supervisor: Pablo

Facial performance capture III

- Sparse Localized Deformation Components (Neumann et al., SIGGRAPH Asia 2013)
- Facial Performance Enhancement using Dynamic Shape Space Analysis (Bermano et al., TOG 2014, to appear)

Supervisor: Levi

max planck institut informatik

Summary

- Topic assignment:
 - Send a list of 3 topics (in order of preference) until
 Monday, 21 April 2014
 - Slots are filled in first-come, first-served fashion
 - We will try to accommodate wishes as much as possible
 - Topics will be assigned on Tuesday, 22 April 2014
- First topic presentation: Thursday, 8 May 2014
- Next week:
 - "How to read an academic paper"
 - "How to give a good talk"
- Questions?

Applications: The Foundry Showreel

