Graphics, Vision and Video Group

Computer Vision for Computer Graphics

Prof. Dr. Christian Theobalt
Dr. Christian Richardt
Summer Semester 2014
Coordinates

- MPI-INF – E1 4, room 019
- Thursdays, 14:15 – 16:00
- Mailing list:
 - itvc@lists.mpi-inf.mpg.de
 - https://lists.mpi-inf.mpg.de/listinfo
- Website:
Organisers

- Christian Theobalt
 - MPI-INF, room 228
 - theobalt@mpi-inf.mpg.de

- Christian Richardt (organisational contact)
 - MPI-INF, room 215
 - richardt@mpi-inf.mpg.de
Formal requirements in a nutshell

- Your presence is required!
 - We will monitor attendance.
- Read all the papers
- Submit questions for and participate in discussion
- One topic is “Your Topic” (2 papers):
 - Deliver a 30 minute presentation
 - Write a 5–7 page report
- Grade: talk 30%, discussion 30%, report 40%
Prior knowledge

- Not for beginners in visual computing
- You need experience in:
 - computer vision
 - computer graphics
 - geometric modeling
 - basic numerical methods
- Examples: you should know how …
 - … a camera is modeled mathematically
 - … 3D transformations are described
 - … a system of equations is solved, etc.
Registration

- Register by email – richardt@mpi-inf.mpg.de
 - Matriculation number, degree program, semester, previous courses or experience (if you haven’t done this yet)
- Fill in sign-up sheet
- Topic assignment:
 - Send a list of 3 topics (in order of preference) until Monday, 21 April 2014
 - Slots are filled in first-come, first-served fashion
 - We will try to accommodate wishes as much as possible
 - Topics will be assigned on Tuesday, 22 April 2014
- Lastly register in HiS POS in 2–4 weeks (email to come)
Organisation

- **18 topics to choose from**
 - Listed on seminar website
 - Introduced in detail later today

- **10 presentation slots in total:**
 - First presentation: **Thursday, 8 May 2014**
 - Each week until **Thursday, 24 July 2014** (including)

- **Each topic has a supervisor:**
 - You can ask questions by e-mail at any time
 - about your topic, the papers, your presentation and report
 - Up to one office hour per week
Presentations

- Same order as on seminar website
 - Slots can be swapped if necessary: talk to other participants first

- About 30 minutes long:
 - About 5 minutes:
 - summary of previous week
 - finding themes that join the two weeks
 - About 25 minutes:
 - presentation of the two papers
 - again finding the common links between the papers

- Direct public feedback from seminar organisers after talk
Suggested presentation preparation

- Schedule two meetings with your supervisor:
 - First meeting: 2–3 weeks before presentation:
 - Read the papers for this meeting
 - Ask questions if you have difficulties
 - Discuss your plans for presentation
 - Second meeting: 1 week before presentation:
 - Prepare a preliminary presentation
 - We can provide feedback

- It is your responsibility to arrange the meetings
- Do not rely on them proving last-minute feedback
Discussion

- 45–60 minutes long

Day before the seminar:
- Submit 2+ questions for discussion to richardt@mpi-inf.mpg.de
- Important: your contribution will be marked

At the seminar:
- One person chosen at random leads the discussion
- Will get digest of questions submitted before the seminar
- Gives summary of the strengths and weaknesses
- Moderates and guides discussion
- Raises open questions that remain
- This will also be marked
Report

- 5–7 page summary of the major ideas in your topic:
 - 3–4 pages on the two papers
 - 3–4 additional paper references
 - 2–3 pages with your own ideas, for example:
 - Limitations not mentioned in the paper + sketch of potential solution
 - Try to suggest improvements
 - Novel ideas based on content described in the papers
 - Can be the result of the discussion after your presentation

- The idea is that you get a feeling for your specific topic surpassing the level of simply understanding a paper.
Report

- Due date: **Thursday, 21 August 2014**
 (4 weeks after last seminar)
- Send PDF by e-mail
- We will provide a LaTeX template on seminar website
 - If you use other software, make it look like the LaTeX template
 - this is your responsibility
 - Strongly recommended to learn LaTeX
Grading

- **Presentation** *(overall: 30%)*
 - Form *(30%)*: time, speed, structure of slides
 - Content *(50%)*: structure, story line and connections, main points, clarity
 - Questions *(20%)*: answers to questions

- **Discussion** *(overall: 30%)*
 - Submitted questions *(33%)*: insight, depth, inquisition
 - Participation *(33%)*: willingness, debate, ideas
 - Moderation *(33%)*: strengths and weaknesses, integration of questions

- **Report** *(overall: 40%)*
 - Form *(10%)*: diligence, structure, appropriate length
 - Context *(20%)*: the big picture, topic in context
 - Technical correctness *(30%)*
 - Discussion *(40%)*: novelty, transfer, own ideas / in own words
Benefits to you

- Practise important skills in research
 - Read and understand technical papers
 - Present scientific results and convince other people
 - Analyse and develop new ideas through discussions

- Discussion is essential:
 - If you don’t participate, you miss a big chance
 - Most ideas are developed in discussions about other papers

- Therefore:
 - Prepare for the seminar classes!
 - Participate actively in the discussions!
 - Benefit from the interaction in the group!
What this seminar is not …

- A course to just sit and listen
 - Come prepared
 - Read all papers before class, think about problems, submit questions and discuss them in class
 - Your participation benefits everyone
 - the group makes the seminar

- “Cheap” 8 credit points
 - Don’t underestimate the time it takes to understand a paper, prepare a talk, and write a report
 - So take it seriously!
Schedule

- **17 April** – Introduction
- **24 April** – Lectures:
 - “How to read an academic paper”
 - “How to give a good talk”
- **8 May** – First presentation by a student
- … 8 more weekly presentations
- **24 July** – Last presentation by a student
- **21 August** – Report deadline
Introduction to the topics
Vision or graphics?

Song Hye Kyo
Vision or graphics?
Geometry

- e.g. environment models

[Bokeloh et al., Eurographics 2009]
Appearance

- e.g. human appearance models:

[Ma et al., EGSR 2007]
Motion

- e.g. marker-based performance capture:
Computer vision

- Low-level vision:
 - Feature detection & correspondence
 - Optical flow
Computer vision

- High-level vision:
 - Scene understanding / recognition / reconstruction

Human motion estimation

Multi-view stereo reconstruction

Object recognition
Computer Graphics / Computer Vision

Real world

- Images
- Videos
- Sensor data
- ...

Computer Graphics

- Geometry
- Material
 - Albedo
 - Reflectance
- Lighting
- Physics
 - Motion
 - Deformation

Scene model

Computer Vision

- Images
- Videos
- Sensor data
- ...

Images, Videos, Sensor data...

• Geometry
• Material
 • Albedo
 • Reflectance
• Lighting
• Physics
 • Motion
 • Deformation
Topics

- Covering state-of-the-art research papers
- Strong focus on top conferences and journals in computer vision and computer graphics:
 - ACM SIGGRAPH & ACM SIGGRAPH Asia
 - Eurographics
 - IEEE Computer Vision and Pattern Recognition (CVPR)
 - International Conference on Computer Vision (ICCV)
 - European Conference on Computer Vision (ECCV)
 - International Journal of Computer Vision (IJCV)
 - IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)
Dense correspondence

- **PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing** (*Barnes et al.*, SIGGRAPH 2009)
- **Non-Rigid Dense Correspondence with Applications for Image Enhancement** (*HaCohen et al.*, SIGGRAPH 2011)
Stereoscopic image editing

- **Changing Perspective in Stereoscopic Images**
 (Du et al., TVCG 2013)

- **StereoPasting: Interactive Composition in Stereoscopic Images**
 (Tong et al., TVCG 2013)
Image-based editing

- **3-Sweep: Extracting Editable Objects from a Single Photo**

 (Chen et al., SIGGRAPH Asia 2013)

- **Interactive Images: Cuboid Proxies for Smart Image Manipulation**

 (Zheng et al., SIGGRAPH 2012)
Image-based editing

- **3-Sweep: Extracting Editable Objects from a Single Photo** *(Chen et al., SIGGRAPH Asia 2013)*

- **Interactive Images: Cuboid Proxies for Smart Image Manipulation** *(Zheng et al., SIGGRAPH 2012)*
Intrinsic image decomposition

- **User-Assisted Intrinsic Images**
 (Bousseau et al., SIGGRAPH Asia 2009)

- **Coherent Intrinsic Images from Photo Collections**
 (Laffont et al., SIGGRAPH Asia 2012)

Applications

Re-texturing
Video stabilisation

- **Subspace Video Stabilization**
 (Liu et al., TOG 2011)

- **Bundled camera paths for video stabilization**
 (Liu et al., SIGGRAPH 2013)
Multi-perspective panoramas

- **Omnistereo: Panoramic Stereo Imaging**
 (Peleg et al., PAMI 2001)

- **Megastereo: Constructing High-Resolution Stereo Panoramas**
 (Richardt et al., CVPR 2013)
Depth-based SLAM

- **KinectFusion**: Real-time Dense Surface Mapping and Tracking
 (*Newcombe et al.*, ISMAR 2011)

- **Real-time 3D Reconstruction at Scale Using Voxel Hashing**
 (*Nießner et al.*, SIGGRAPH Asia 2013)
Multi-view stereo

- **Multi-View Stereo Revisited** *(Goesele et al., CVPR 2006)*
- **Joint Estimation of Motion, Structure and Geometry from Stereo Sequences** *(Valgaerts et al., ECCV 2010)*
Human pose estimation I

- **Fast Articulated Motion Tracking using a Sums of Gaussians Body Model** *(Stoll et al., ICCV 2011)*

- **Markerless Motion Capture with Unsynchronized Moving Cameras** *(Hasler et al., CVPR 2009)*
Human pose estimation II

- Pictorial Structures Revisited: People Detection and Articulated Pose Estimation *(Andriluka et al., CVPR 2009)*
- Strong Appearance and Expressive Spatial Models for Human Pose Estimation *(Pishchulin et al., ICCV 2013)*

Supervisor: Hamid/Ahmed
Human pose estimation III

- **Real-Time Human Pose Recognition in Parts from a Single Depth Image** *(Shotton et al., CVPR 2011)*

- **The Vitruvian Manifold: Inferring Dense Correspondences for One-Shot Human Pose Estimation** *(Taylor et al., CVPR 2012)*
Performance capture

- **Motion Capture Using Joint Skeleton Tracking and Surface Estimation** *(Gall et al., CVPR 2009)*

- **Performance Capture from Sparse Multi-view Video** *(de Aguiar et al., SIGGRAPH 2008)*
Shape and reflectance

- Improved Reconstruction of Deforming Surfaces by Cancelling Ambient Occlusion (Beeler et al., ECCV 2012)
- Shading-based Dynamic Shape Refinement from Multi-view Video under General Illumination (Wu et al., ICCV 2011)
Hand pose estimation

- **Real-Time Hand-Tracking with a Color Glove** (Wang & Popović, SIGGRAPH 2009)
- **Interactive Markerless Articulated Hand Motion Tracking using RGB and Depth Data** (Sridhar et al., ICCV 2013)
Hand pose estimation

- **Real-Time Hand-Tracking with a Color Glove** *(Wang & Popović, SIGGRAPH 2009)*

- **Interactive Markerless Articulated Hand Motion Tracking using RGB and Depth Data** *(Sridhar et al., ICCV 2013)*
Topology-adaptive meshes

- **Topology-Adaptive Mesh Deformation for Surface Evolution, Morphing, and Multiview Reconstruction**

 (Zaharescu et al., PAMI 2011)

- **Progressive Shape Models**

 (Letouzey and Boyer, CVPR 2012)
Facial performance capture I

- **High-Quality Passive Facial Performance Capture using Anchor Frames** (*Beeler et al.*, SIGGRAPH 2011)
- **Reconstructing Detailed Dynamic Face Geometry from Monocular Video** (*Garrido et al.*, SIGGRAPH Asia 2013)

Supervisor: Pablo
Facial performance capture II

- **3D Shape Regression for Real-time Facial Animation**
 (Cao et al., SIGGRAPH 2013)

- **Online Modeling For Realtime Facial Animation**
 (Bouaziz et al., SIGGRAPH 2013)
Facial performance capture III

- **Sparse Localized Deformation Components**
 \((\text{Neumann et al.}, \text{SIGGRAPH Asia 2013})\)

- **Facial Performance Enhancement using Dynamic Shape Space Analysis**
 \((\text{Bermano et al.}, \text{TOG 2014, to appear})\)
Summary

- **Topic assignment:**
 - Send a list of 3 topics (in order of preference) until **Monday, 21 April 2014**
 - Slots are filled in first-come, first-served fashion
 - We will try to accommodate wishes as much as possible
 - Topics will be assigned on **Tuesday, 22 April 2014**

- **First topic presentation:** **Thursday, 8 May 2014**

- **Next week:**
 - “How to read an academic paper”
 - “How to give a good talk”

- **Questions?**
Applications: The Foundry Showreel

http://www.thefoundry.co.uk/about-us/showreels/