Graphics, Vision and Video Group

Computer Vision for Computer Graphics

Prof. Dr. Christian Theobalt
Dr. Christian Richardt
Summer Semester 2015
Basic Coordinates

- MPI-INF – E1 4, room 021
- Thursdays, 14:15 – 16:00
- Mailing list:
  - itvc@lists.mpi-inf.mpg.de
  - https://lists.mpi-inf.mpg.de/listinfo
- Website:
Organisers

- Christian Theobalt
  - MPI-INF, room 228
  - theobalt@mpi-inf.mpg.de

- Christian Richardt (organisational contact)
  - MPI-INF, room 215
  - richardt@mpi-inf.mpg.de
Formal requirements in a nutshell

- You read all the papers
- Your presence is required!
  - We will monitor attendance.
- Then submit questions for and participate in discussion
- One topic is “Your Topic” (2 papers):
  - Deliver a 30 minute presentation
  - Write a 5–7 page report
- Grade: talk 30%, discussion 30%, report 40%
Prior knowledge

- Not for beginners in visual computing
- You need experience in:
  - computer vision
  - computer graphics
  - geometric modeling
  - basic numerical methods
- Examples: you should know how …
  - … a camera is modeled mathematically
  - … 3D transformations are described
  - … a system of equations is solved, etc.
Registration

- Register by email – richardt@mpi-inf.mpg.de
  - Matriculation number, degree program, semester, previous courses or experience (if you haven’t done this yet)

- Fill in sign-up sheet

- Topic assignment:
  - Send a list of 3 topics (in order of preference) until Tomorrow, Friday, 24 April 2015
  - Slots are filled in first-come, first-served fashion
  - We will try to accommodate wishes as much as possible
  - Topics will be assigned on Monday, 27 April 2015

- Lastly register in HiS POS in 2–4 weeks (email to come)
Organisation

- 19 topics to choose from
  - Listed on seminar website
  - Introduced in detail later today

- 10(+1) presentation slots in total:
  - First presentation: **Thursday, 7 or 21 May 2015**
  - Each week until **Thursday, 30 July 2015** (including)

- Each topic has a supervisor:
  - You can ask questions by e-mail at any time
    - about your topic, the papers, your presentation and report
  - Up to one office hour per week
Presentations

- Same order as on seminar website
  - Slots can be swapped if necessary: talk to other participants first

- About 30 minutes long:
  - About 5 minutes:
    - summary of previous week
    - finding themes that join the two weeks
  - About 25 minutes:
    - presentation of the two papers
    - again finding the common links between the papers

- Direct public feedback from seminar organisers after talk
Suggested presentation preparation

- Schedule two meetings with your supervisor:
  - First meeting: 2–3 weeks before presentation:
    - Read the papers for this meeting
    - Ask questions if you have difficulties
    - Discuss your plans for presentation
  - Second meeting: 1 week before presentation:
    - Prepare a preliminary presentation
    - We can provide feedback

- It is your responsibility to arrange the meetings
- Do not rely on them proving last-minute feedback
Discussion

- 45–60 minutes long

Day before the seminar:
- Submit 2+ questions for discussion to richardt@mpi-inf.mpg.de
- Important: your contribution will be marked

At the seminar:
- One person chosen at random leads the discussion
- Will get digest of questions submitted before the seminar
- Gives summary of the strengths and weaknesses
- Moderates and guides discussion
- Raises open questions that remain
- This will also be marked
Report

- 5–7 page summary of the major ideas in your topic:
  - 3–4 pages on the two papers
  - 3–4 additional paper references
  - 2–3 pages with your own ideas, for example:
    - Limitations not mentioned in the paper + sketch of potential solution
    - Try to suggest improvements
    - Novel ideas based on content described in the papers
    - Can be the result of the discussion after your presentation

- The idea is that you get a feeling for your specific topic surpassing the level of simply understanding a paper.
Report

- Due date: **Thursday, 27 August 2015**
  (4 weeks after the last seminar)
- Send PDF by e-mail
- We will provide a LaTeX template on seminar website
  - If you use other software, make it look like the LaTeX template
    - this is your responsibility
  - Strongly recommended to learn LaTeX
Grading

- **Presentation (overall: 30%)**
  - Form (30%): time, speed, structure of slides
  - Content (50%): structure, story line and connections, main points, clarity
  - Questions (20%): answers to questions

- **Discussion (overall: 30%)**
  - Submitted questions (33%): insight, depth, inquisition
  - Participation (33%): willingness, debate, ideas
  - Moderation (33%): strengths and weaknesses, integration of questions

- **Report (overall: 40%)**
  - Form (10%): diligence, structure, appropriate length
  - Context (20%): the big picture, topic in context
  - Technical correctness (30%)
  - Discussion (40%): novelty, transfer, own ideas / in own words
Benefits to you

- Practise important skills in research
  - Read and understand technical papers
  - Present scientific results and convince other people
  - Analyse and develop new ideas through discussions

- Discussion is essential:
  - If you don’t participate, you miss a big chance
  - Most ideas are developed in discussions about other papers

- Therefore:
  - Prepare for the seminar classes
  - Participate actively in the discussions
  - Benefit from the interaction in the group
What this seminar is not …

- A course to just sit and listen
  - Come prepared
  - Read all papers before class, think about problems, submit questions and discuss them in class
  - Your participation benefits everyone
    - the group makes the seminar

- “Cheap” 8 credit points
  - Don’t underestimate the time it takes to understand a paper, prepare a talk, and write a report
  - So take it seriously!
Schedule

- 23 April – Introduction  
- 30 April – Lectures:
  - “How to read an academic paper”
  - “How to give a good talk”
- (7 May – Example conference presentation)
- 7 or 21 May – First presentation by a student
- … 8 more weekly presentations
- 30 July – Last presentation by a student
- 27 August – Report deadline
Introduction to the topics
Vision or graphics?

Song Hye Kyo
Vision or graphics?
Applications: The Foundry Showreel

http://www.thefoundry.co.uk/about-us/showreels/
Geometry

- e.g. environment models

[Bokeloh et al., Eurographics 2009]
Appearance

- e.g. human appearance models:

[Ma et al., EGSR 2007]
Motion

- e.g. marker-based performance capture:
Computer vision

- Low-level vision:

Feature detection & correspondence

Optical flow
Computer vision

- High-level vision:
  - Scene understanding / recognition / reconstruction

Human motion estimation

Multi-view stereo reconstruction

Object recognition
Computer Graphics / Computer Vision

Real world

Computer Vision

- Geometry
- Material
  - Albedo
  - Reflectance
- Lighting
- Physics
  - Motion
  - Deformation

Scene model

Computer Graphics

- Images
- Videos
- Sensor data
  - ...

Images

Videos

Sensor data
Topics

- Covering state-of-the-art research papers
- Strong focus on top conferences and journals in computer vision and computer graphics:
  - SIGGRAPH & SIGGRAPH Asia (Transactions on Graphics)
  - Eurographics (Computer Graphics Forum)
  - IEEE Computer Vision and Pattern Recognition (CVPR)
  - International Conference on Computer Vision (ICCV)
  - European Conference on Computer Vision (ECCV)
  - International Journal of Computer Vision (IJCV)
  - Transactions on Pattern Analysis and Machine Intelligence (PAMI)
Estimating reflectance

- **Blind Reflectometry**
  \((\text{Romeiro and Zickler, ECCV 2010})\)

- **Appearance-from-Motion: Recovering Spatially Varying Surface Reflectance under Unknown Lighting**
  \((\text{Dong et al., SIGGRAPH Asia 2014})\)

Supervisor: Abhimitra
Shading-based refinement and intrinsic images

- **Real-time Shading-based Refinement for Consumer Depth Cameras**
  
  *(Wu et al., SIGGRAPH ASIA 2014)*

---

Supervisor: Michael, Abhimetra
Shading-based refinement and intrinsic images

- **A Simple Model for Intrinsic Image Decomposition with Depth Cues**
  
  *Chen and Koltun, ICCV 2013*

Supervisor: Michael, Abhimetra
Shading-based refinement and intrinsic images

- A Simple Model for Intrinsic Image Decomposition with Depth Cues
  (*Chen and Koltun*, ICCV 2013)

Supervisor: Michael, Abhimetra
Shading-based refinement and intrinsic images

- A Simple Model for Intrinsic Image Decomposition with Depth Cues (Chen and Koltun, ICCV 2013)

Supervisor: Michael, Abhimetra
Intrinsic Video

- **Intrinsic Video**
  (*Kong et al.*, ECCV 2014)

- **Interactive Intrinsic Video Editing**
  (*Bonneel et al.*, SIGGRAPH Asia 2014)
Stereoscopic image editing

- **Changing Perspective in Stereoscopic Images**
  \((Du \ et \ al., \ TVCG \ 2013)\)
- **StereoPasting: Interactive Composition in Stereoscopic Images**
  \((Tong \ et \ al., \ TVCG \ 2013)\)
Video stabilisation

- **Subspace Video Stabilization**
  (*Liu et al.*, TOG 2011)

- **Bundled camera paths for video stabilization**
  (*Liu et al.*, SIGGRAPH 2013)
Video motion editing

- **First-person Hyperlapse Videos**
  *(Kopf et al., SIGGRAPH 2014)*

- **Slippage-free Background Replacement for Hand-held Video**
  *(Zhong et al., SIGGRAPH Asia 2014)*
Light-field panoramas

- **Megastereo: Constructing High-Resolution Stereo Panoramas**  
  *(Richardt et al., CVPR 2013)*

- **Panorama Light-Field Imaging**  
  *(Birklbauer & Bimber, Eurographics 2014)*
Multi-view image segmentation

- **Wide Baseline Multi-View Video Matting using a Hybrid Markov Random Field** (*Wang et al.*, ICPR 2014)
- **Sparse Multi-View Consistency for Object Segmentation** (*Djelouah et al.*, PAMI 2015)

Supervisor: Nadia
Scanning and deformation

- **Real-time Non-rigid Reconstruction using an RGB-D Camera**
  (Zollhöfer et al., SIGGRAPH 2014)

Supervisor: Michael
Scanning and deformation

- Real-time Non-rigid Reconstruction using an RGB-D Camera
  (Zollhöfer et al., SIGGRAPH 2014)

Supervisor: Michael
Scanning and deformation

- 3D Self-Portraits (*Li et al.*, SIGGRAPH Asia 2013)
Texture Optimization

- **Color Map Optimization for 3D Reconstruction with Consumer Depth Cameras** *(Zhou and Koltun, SIGGRAPH 2014)*

- **High Resolution 3D Shape Texture from Multiple Videos** *(Tsimplinaki et al., CVPR 2014)*
Modelling static geometry

- **3D Modelling of Static Environments Using Multiple Spherical Stereo** *(Kim et al., ECCV 2010 Workshops)*
- **Floating Scale Surface Reconstruction** *(Fuhrmann and Goesele, SIGGRAPH 2014)*

Supervisor: Nadia
Modelling dynamic geometry

- **Surface Capture for Performance-Based Animation** (*Starck and Hilton*, Computer Graphics & Applications 2007)

Supervisor: Nadia, Dan
Human shape estimation

- Deformable model for estimating clothed and naked human shapes from a single image (Chen et al., Visual Computer 2013)

- Estimating Human Shape and Pose from a Single Image (Guan et al., ICCV 2009)

Supervisor: Helge
Human pose estimation


- **Fast Articulated Motion Tracking using a Sums of Gaussians Body Model** (*Stoll et al.*, ICCV 2011)
Outdoor motion capture

- Motion Capture from Body-Mounted Cameras
  (*Shiratori et al.*, SIGGRAPH 2011)

- Efficient ConvNet-based Marker-less Motion Capture in General Scenes with a Low Number of Cameras
  (*Elhayek et al.*, CVPR 2015)

Supervisor: Helge, Ahmed
Hand tracking

- **Real-Time Hand-Tracking with a Color Glove**
  (Wang & Popović, SIGGRAPH 2009)

- **Efficient model-based 3D tracking of hand articulations using Kinect**
  (Oikonomidis et al., BMVC 2011)
Hands+object tracking

- Full DOF Tracking of a Hand Interacting with an Object by Modeling Occlusions and Physical Constraints (Oikonomidis et al., ICCV 2011)

- Motion capture of hands in action using discriminative salient points, (Ballan et al., ECCV 2012)
Facial performance capture

- **Realtime Facial Animation with On-the-fly Correctives**
  
  *Li et al.*, SIGGRAPH 2013

- **Online Modeling For Realtime Facial Animation**
  
  *Bouaziz et al.*, SIGGRAPH 2013
Facial performance transfer

- Spacetime Expression Cloning for Blendshapes
  \((Seol \ et \ al., \ TOG \ 2012)\)

- Controllable High-fidelity Facial Performance Transfer
  \((Xu \ et \ al., \ SIGGRAPH \ 2014)\)
Character animation from multi-camera capture

- **4D Video Textures for Interactive Character Appearance** *(Casas et al., Eurographics 2014)*

- **Video-based Characters – Creating New Human Performances from a Multi-view Video Database** *(Xu et al., SIGGRAPH 2011)*

Supervisor: Dan
Summary

- **Topic assignment:**
  - Send a list of 3 topics (in order of preference) until **Tomorrow, Friday, 24 April 2015**
  - Slots are filled in first-come, first-served fashion
  - We will try to accommodate wishes as much as possible
  - Topics will be assigned on **Monday, 27 April 2015**

- **First topic presentation:** **Thursday, 7 or 21 May 2015**

- **Next week:**
  - “How to read an academic paper”
  - “How to give a good talk”

- **Questions?**