

Graphics, Vision and Video Group

Computer Vision for Computer Graphics

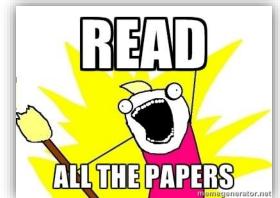
Prof. Dr. Christian Theobalt Dr. Christian Richardt

Summer Semester 2015

max planck institut

Basic Coordinates

- MPI-INF E1 4, room 021
- Thursdays, 14:15 16:00
- Mailing list:
 - itvc@lists.mpi-inf.mpg.de
 - https://lists.mpi-inf.mpg.de/listinfo
- Website:
 - http://gvv.mpi-inf.mpg.de/teaching/gvv_seminar_2015/


Organisers

- Christian Theobalt
 - MPI-INF, room 228
 - theobalt@mpi-inf.mpg.de
- Christian Richardt (organisational contact)
 - MPI-INF, room 215
 - richardt@mpi-inf.mpg.de

Formal requirements in a nutshell

- You read all the papers
- Your presence is required!
 - We will monitor attendance.

- Then submit questions for and participate in discussion
- One topic is "Your Topic" (2 papers):
 - Deliver a 30 minute presentation
 - Write a 5–7 page report
- Grade: talk 30%, discussion 30%, report 40%

max planck institut

Prior knowledge

- Not for beginners in visual computing
- You need experience in:
 - computer vision
 - computer graphics
 - geometric modeling
 - basic numerical methods
- Examples: you should know how ...
 - ... a camera is modeled mathematically
 - 3D transformations are described
 - ... a system of equations is solved, etc.

Registration

- Register by email <u>richardt@mpi-inf.mpg.de</u>
 - Matriculation number, degree program, semester, previous courses or experience (if you haven't done this yet)
- Fill in sign-up sheet
- Topic assignment:
 - Send a list of 3 topics (in order of preference) until
 Tomorrow, Friday, 24 April 2015
 - Slots are filled in first-come, first-served fashion
 - We will try to accommodate wishes as much as possible
 - Topics will be assigned on Monday, 27 April 2015
- Lastly register in HiS POS in 2–4 weeks (email to come)

Organisation

- 19 topics to choose from
 - Listed on seminar website
 - Introduced in detail later today
- 10(+1) presentation slots in total:
 - First presentation: Thursday, 7 or 21 May 2015
 - Each week until Thursday, 30 July 2015 (including)
- Each topic has a supervisor:
 - You can ask questions by e-mail at any time
 - about your topic, the papers, your presentation and report
 - Up to one office hour per week

max planck institut

Presentations

- Same order as on seminar website
 - Slots can be swapped if necessary: talk to other participants first
- About 30 minutes long:
 - About 5 minutes:
 - summary of previous week
 - finding themes that join the two weeks
 - About 25 minutes:
 - presentation of the two papers
 - again finding the common links between the papers
- Direct public feedback from seminar organisers after talk

Suggested presentation preparation

- Schedule two meetings with your supervisor:
 - First meeting: 2–3 weeks before presentation:
 - Read the papers for this meeting
 - Ask questions if you have difficulties
 - Discuss your plans for presentation
 - Second meeting: 1 week before presentation:
 - Prepare a preliminary presentation
 - We can provide feedback
- It is your responsibility to arrange the meetings
- Do not rely on them proving last-minute feedback

max planck institut

Discussion

- 45–60 minutes long
- Day before the seminar:
 - Submit 2+ questions for discussion to <u>richardt@mpi-inf.mpg.de</u>
 - Important: your contribution will be marked
- At the seminar:
 - One person chosen at random leads the discussion
 - Will get digest of questions submitted before the seminar
 - Gives summary of the strengths and weaknesses
 - Moderates and guides discussion
 - Raises open questions that remain
 - This will also be marked

max planck institut

Report

- 5–7 page summary of the major ideas in your topic:
 - 3–4 pages on the two papers
 - 3–4 additional paper references
 - 2–3 pages with your own ideas, for example:
 - Limitations not mentioned in the paper + sketch of potential solution
 - Try to suggest improvements
 - Novel ideas based on content described in the papers
 - Can be the result of the discussion after your presentation
- The idea is that you get a feeling for your specific topic surpassing the level of simply understanding a paper.

Report

- Due date: Thursday, 27 August 2015
 (4 weeks after the last seminar)
- Send PDF by e-mail
- We will provide a LaTeX template on seminar website
 - If you use other software, make it look like the LaTeX template
 - this is your responsibility
 - Strongly recommended to learn LaTeX

Grading

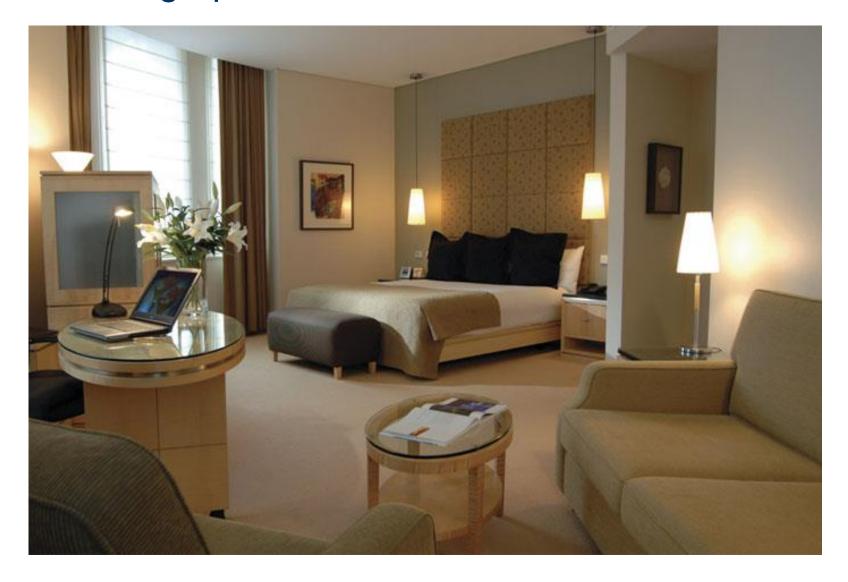
- Presentation (overall: 30%)
 - Form (30%): time, speed, structure of slides
 - Content (50%): structure, story line and connections, main points, clarity
 - Questions (20%): answers to questions
- Discussion (overall: 30%)
 - Submitted questions (33%): insight, depth, inquisition
 - Participation (33%): willingness, debate, ideas
 - Moderation (33%): strengths and weaknesses, integration of questions
- Report (overall: 40%)
 - Form (10%): diligence, structure, appropriate length
 - Context (20%): the big picture, topic in context
 - Technical correctness (30%)
 - Discussion (40%): novelty, transfer, own ideas / in own words

Benefits to you

- Practise important skills in research
 - Read and understand technical papers
 - Present scientific results and convince other people
 - Analyse and develop new ideas through discussions
- Discussion is essential:
 - If you don't participate, you miss a big chance
 - Most ideas are developed in discussions about other papers
- Therefore:
 - Prepare for the seminar classes
 - Participate actively in the discussions
 - Benefit from the interaction in the group

What this seminar is not ...

- A course to just sit and listen
 - Come prepared
 - Read all papers before class, think about problems,
 submit questions and discuss them in class
 - Your participation benefits everyone
 - the group makes the seminar
- "Cheap" 8 credit points
 - Don't underestimate the time it takes to understand a paper,
 prepare a talk, and write a report
 - So take it seriously!


Schedule

- 23 April Introduction < You are here</p>
- 30 April Lectures:
 - "How to read an academic paper"
 - "How to give a good talk"
- (7 May Example conference presentation)
- 7 or 21 May First presentation by a student
- ... 8 more weekly presentations
- 30 July Last presentation by a student
- 27 August Report deadline

Introduction to the topics

Song Hye Kyo

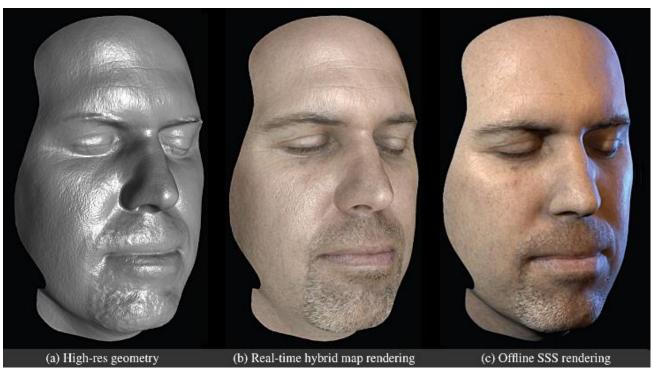
CV4CG 2015 – First Meeting – 23 April 2015

Applications: The Foundry Showreel

Geometry

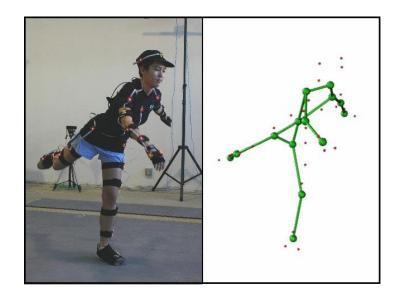
• e.g. environment models

[Bokeloh et al., Eurographics 2009]



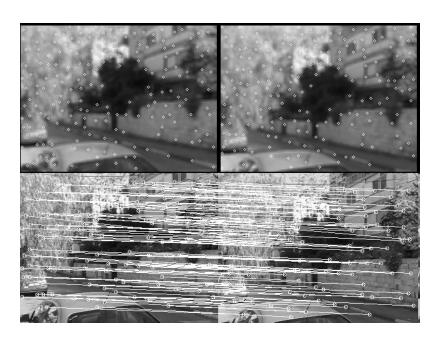
Appearance

e.g. human appearance models:


[Ma et al., EGSR 2007]

Motion

• e.g. marker-based performance capture:

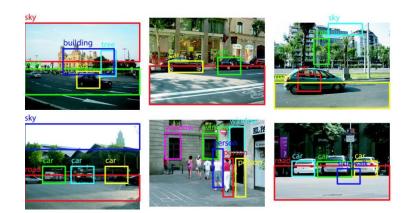


Computer vision

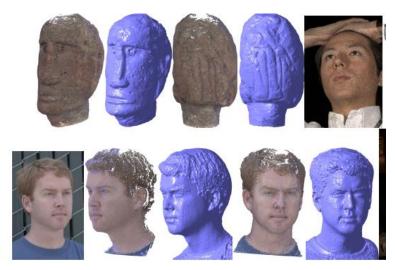
Low-level vision:

Feature detection & correspondence

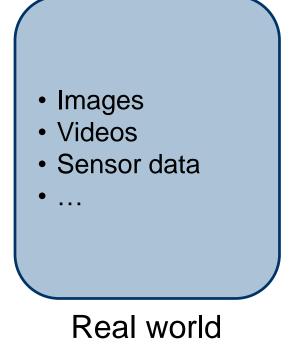
Optical flow

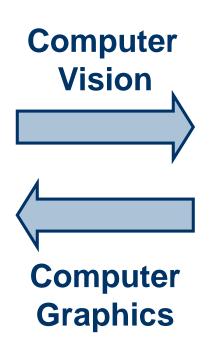


Computer vision


- High-level vision:
 - Scene understanding / recognition / reconstruction

Human motion estimation


Object recognition



Multi-view stereo reconstruction

Computer Graphics / Computer Vision

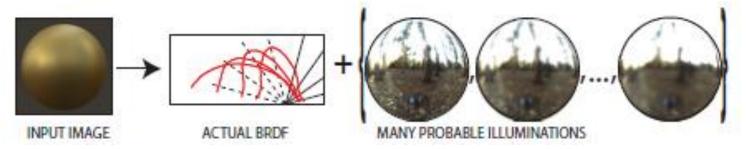
Geometry
Material

Albedo
Reflectance

Lighting
Physics

Motion
Deformation

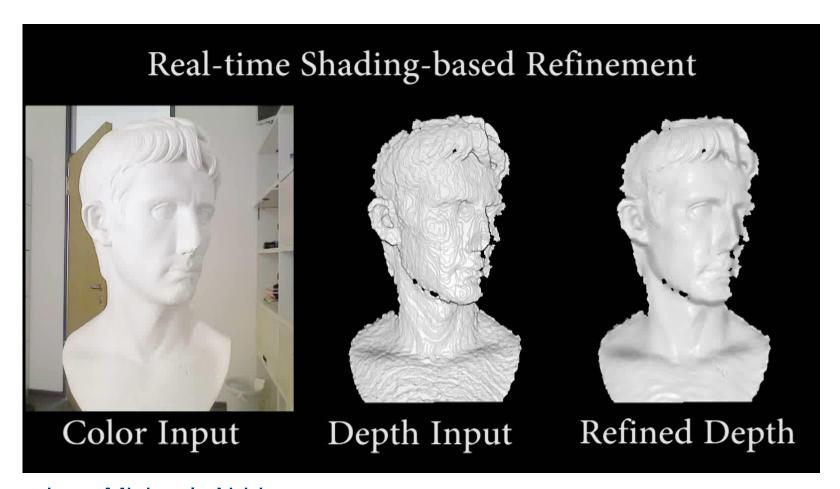
Scene model


Topics

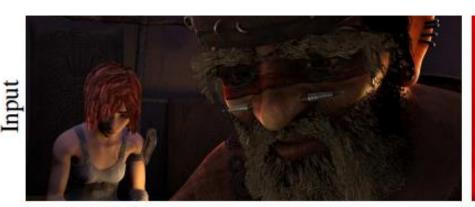
- Covering state-of-the-art research papers
- Strong focus on top conferences and journals in computer vision and computer graphics:
 - SIGGRAPH & SIGGRAPH Asia (Transactions on Graphics)
 - Eurographics (Computer Graphics Forum)
 - IEEE Computer Vision and Pattern Recognition (CVPR)
 - International Conference on Computer Vision (ICCV)
 - European Conference on Computer Vision (ECCV)
 - International Journal of Computer Vision (IJCV)
 - Transactions on Pattern Analysis and Machine Intelligence (PAMI)

Estimating reflectance

Blind Reflectometry
 (Romeiro and Zickler, ECCV 2010)


 Appearance-from-Motion: Recovering Spatially Varying Surface Reflectance under Unknown Lighting (Dong et al., SIGGRAPH Asia 2014)

Shading-based refinement and intrinsic images


 Real-time Shading-based Refinement for Consumer Depth Cameras (Wu et al., SIGGRAPH ASIA 2014)

 A Simple Model for Intrinsic Image Decomposition with Depth Cues (Chen and Koltun, ICCV 2013)

Shading-based refinement and intrinsic images

 A Simple Model for Intrinsic Image Decomposition with Depth Cues (Chen and Koltun, ICCV 2013)

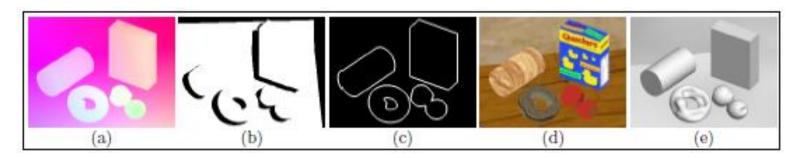
Color

Albedo Supervisor: Michael, Abhimetra

Shading-based refinement and intrinsic images

 A Simple Model for Intrinsic Image Decomposition with Depth Cues (Chen and Koltun, ICCV 2013)

Our approach

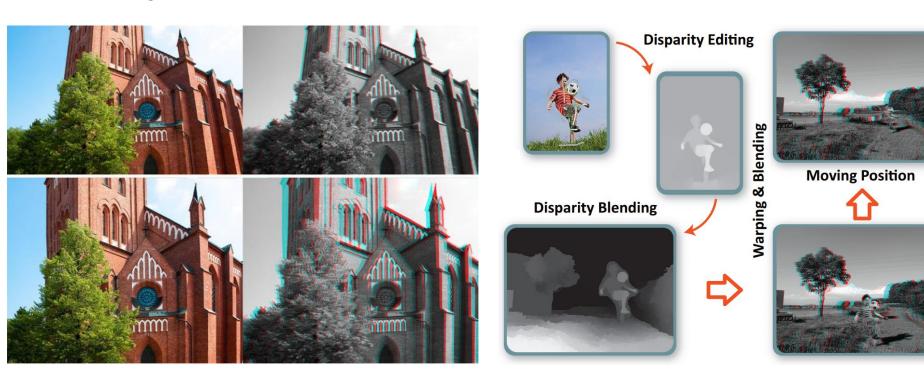

Albedo Supervisor: Michael, Abhimetra

Shading
CV4CG 2015 – First Meeting – 23 April 2015

Intrinsic Video

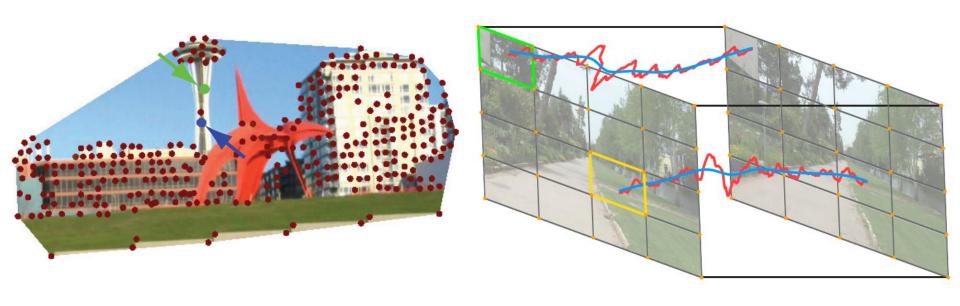
Intrinsic Video
 (Kong et al., ECCV 2014)

 Interactive Intrinsic Video Editing (Bonneel et al., SIGGRAPH Asia 2014)

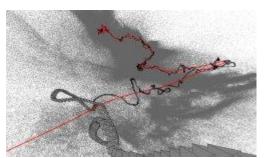


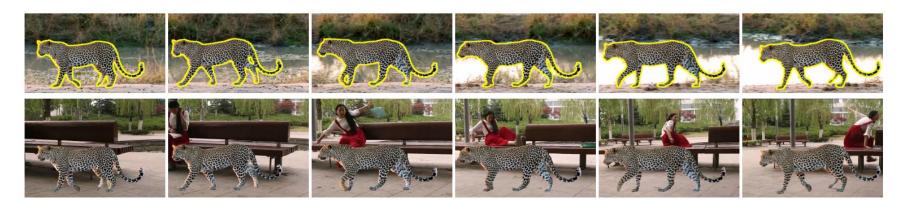
Supervisor: Abhimitra, Christian R.

Stereoscopic image editing


- Changing Perspective in Stereoscopic Images (Du et al., TVCG 2013)
- StereoPasting: Interactive Composition in Stereoscopic Images (Tong et al., TVCG 2013)

Video stabilisation


- Subspace Video Stabilization (Liu et al., TOG 2011)
- Bundled camera paths for video stabilization (Liu et al., SIGGRAPH 2013)


Video motion editing

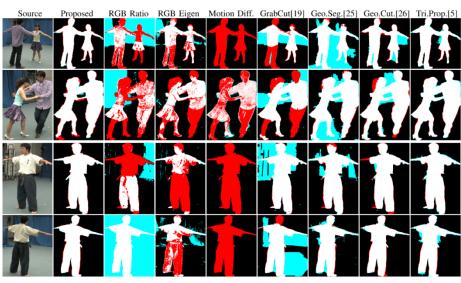
- <u>First-person Hyperlapse Videos</u>
 (Kopf et al., SIGGRAPH 2014)
- Slippage-free Background Replacement for Hand-held Video (Zhong et al., SIGGRAPH Asia 2014)

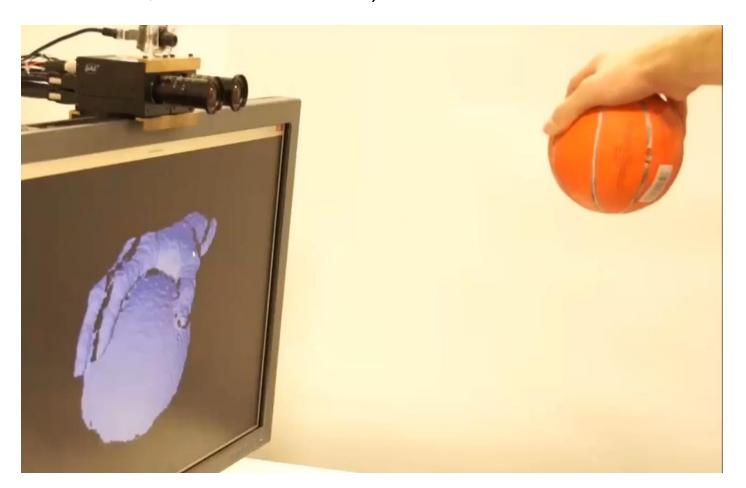
Light-field panoramas

- Megastereo: Constructing High-Resolution Stereo Panoramas (Richardt et al., CVPR 2013)
- Panorama Light-Field Imaging (Birklbauer & Bimber, Eurographics 2014)

Multi-view image segmentation

- Wide Baseline Multi-View Video Matting using a Hybrid Markov Random Field (Wang et al., ICPR 2014)
- Sparse Multi-View Consistency for Object Segmentation (Djelouah et al., PAMI 2015)

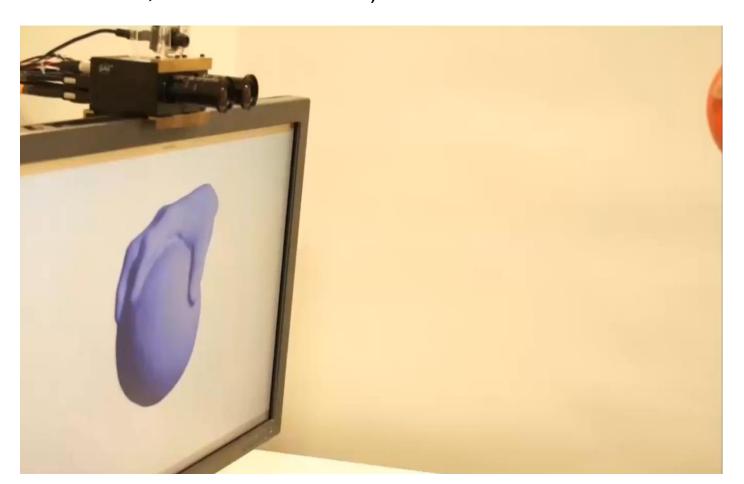



Fig. 2. Multi-view segmentation results for SALSA (upper) and KARATE (lower). Red: under-detected vs. groundtruth. Blue: over-detected vs. groundtruth.

Supervisor: Nadia

Scanning and deformation

 Real-time Non-rigid Reconstruction using an RGB-D Camera (Zollhöfer et al., SIGGRAPH 2014)



Supervisor: Michael

Scanning and deformation

 Real-time Non-rigid Reconstruction using an RGB-D Camera (Zollhöfer et al., SIGGRAPH 2014)

Supervisor: Michael

Scanning and deformation

■ 3D Self-Portraits (*Li et al.*, SIGGRAPH Asia 2013)

Supervisor: Michael

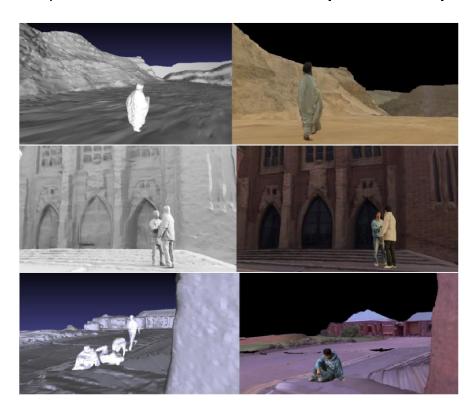
Texture Optimization

- Color Map Optimization for 3D Reconstruction with Consumer Depth Cameras (Zhou and Koltun, SIGGRAPH 2014)
- High Resolution 3D Shape Texture from Multiple Videos (Tsiminaki et al., CVPR 2014)

Supervisor: Nadia

Modelling static geometry

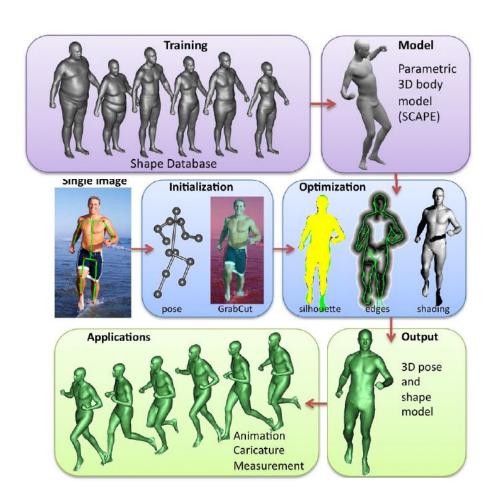
- 3D Modelling of Static Environments Using Multiple Spherical Stereo (Kim et al., ECCV 2010 Workshops)
- Floating Scale Surface Reconstruction
 (Fuhrmann and Goesele, SIGGRAPH 2014)


Supervisor: Nadia


CV4CG 2015 – First Meeting – 23 April 2015

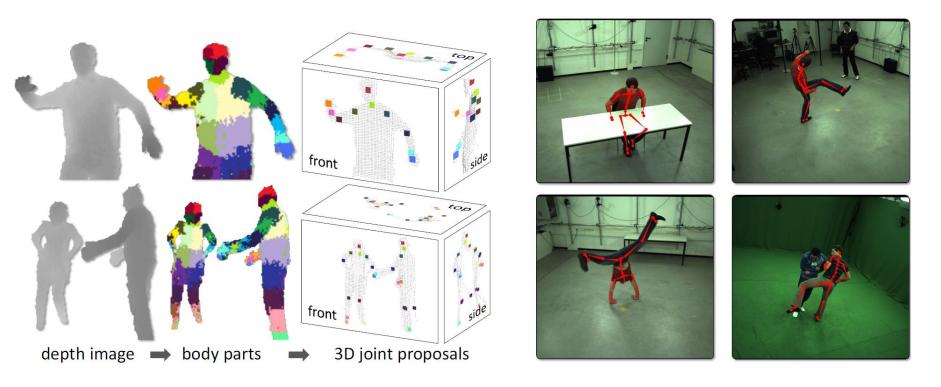
Modelling dynamic geometry

- Outdoor Dynamic 3-D Scene Reconstruction (Kim et al., IEEE
 Transactions on Circuits and Systems for Video Technology 2012)
- Surface Capture for Performance-Based Animation
 (Starck and Hilton, Computer Graphics & Applications 2007)



Supervisor: Nadia, Dan

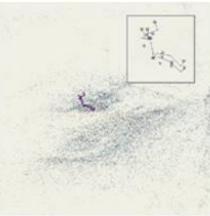
Human shape estimation


- Deformable model for estimating clothed and naked human shapes from a single image (Chen et al., Visual Computer 2013)
- Estimating Human Shape and Pose from a Single Image (Guan et al., ICCV 2009)

Human pose estimation

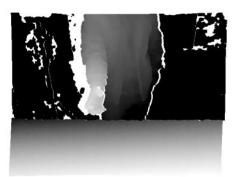
- Real-Time Human Pose Recognition in Parts from a Single Depth Image (Shotton et al., CVPR 2011)
- Fast Articulated Motion Tracking using a Sums of Gaussians Body Model (Stoll et al., ICCV 2011)

Supervisor: Srinath, Helge, Ahmed

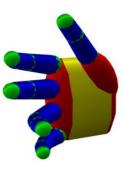

CV4CG 2015 – First Meeting – 23 April 2015

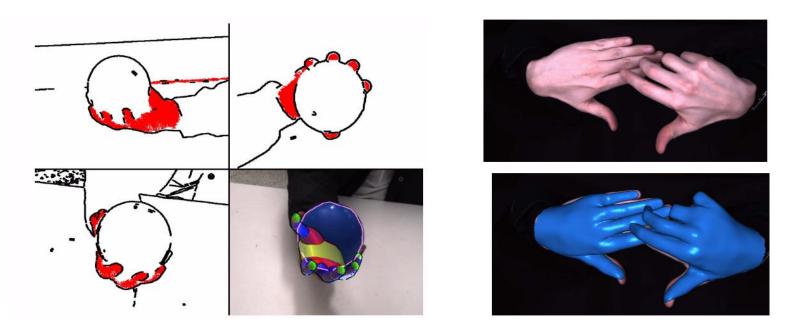
Outdoor motion capture

- Motion Capture from Body-Mounted Cameras (Shiratori et al., SIGGRAPH 2011)
- Efficient ConvNet-based Marker-less Motion Capture in General Scenes with a Low Number of Cameras (Elhayek et al., CVPR 2015)



Hand tracking

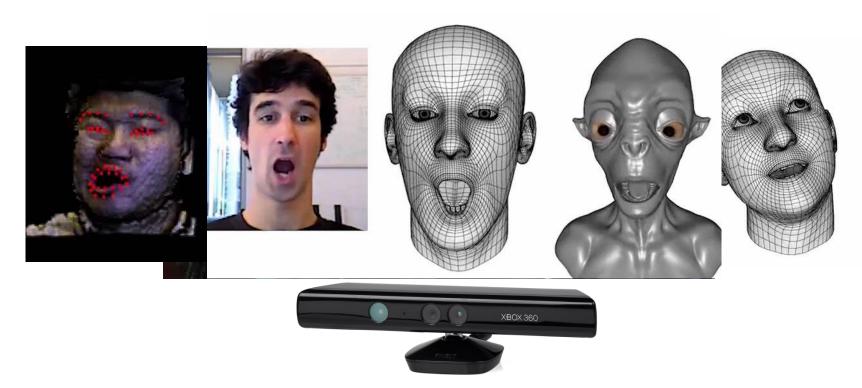

- Real-Time Hand-Tracking with a Color Glove (Wang & Popović, SIGGRAPH 2009)
- Efficient model-based 3D tracking of hand articulations using Kinect (Oikonomidis et al., BMVC 2011)



Supervisor: Srinath

Hands+object tracking

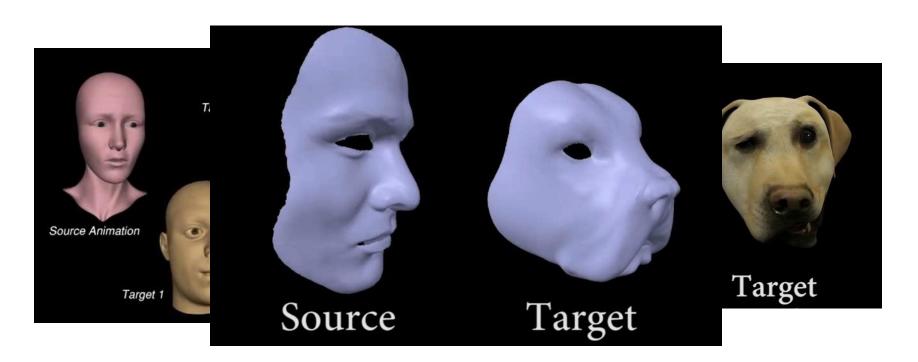
- Full DOF Tracking of a Hand Interacting with an Object by Modeling Occlusions and Physical Constraints
 (Oikonomidis et al., ICCV 2011)
- Motion capture of hands in action using discriminative salient points, (Ballan et al., ECCV 2012)



Supervisor: Srinath

Facial performance capture

- Realtime Facial Animation with On-the-fly Correctives (Li et al., SIGGRAPH 2013)
- Online Modeling For Realtime Facial Animation (Bouaziz et al., SIGGRAPH 2013)



Supervisor: Pablo

Facial performance transfer

- Spacetime Expression Cloning for Blendshapes (Seol et al., TOG 2012)
- Controllable High-fidelity Facial Performance Transfer (Xu et al., SIGGRAPH 2014)

Character animation from multi-camera capture

- 4D Video Textures for Interactive Character Appearance (Casas et al., Eurographics 2014)
- <u>Video-based Characters Creating New Human Performances from a Multi-view Video Database</u>
 (Xu et al., SIGGRAPH 2011)

Supervisor: Dan

max planck institut

Summary

- Topic assignment:
 - Send a list of 3 topics (in order of preference) until
 Tomorrow, Friday, 24 April 2015
 - Slots are filled in first-come, first-served fashion
 - We will try to accommodate wishes as much as possible
 - Topics will be assigned on Monday, 27 April 2015
- First topic presentation: Thursday, 7 or 21 May 2015
- Next week:
 - "How to read an academic paper"
 - "How to give a good talk"
- Questions?