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Abstract

This master's thesis investigates the bene�t of utilizing depth information acquired by a
time-of-�ight (ToF) camera for hand shape recognition in unrestricted viewpoints. Speci�-
cally, we assess the hypothesis that classical 3D content descriptors might be unnecessarily
powerful for ToF data and extended 2D descriptors could perform well enough. Our system
is based on the appearance-based retrieval paradigm, using a synthetic 3D hand model to
generate its database. The system is able to run interactively. For increased robustness,
no color, intensity, or time coherence information is used. A novel, domain-speci�c algo-
rithm for segmenting the forearm from the upper body based on reprojecting the acquired
geometry into the lateral view is introduced. Moreover, three kinds of descriptors exploit-
ing depth data are proposed and the made design choices are experimentally supported.
The whole system is then evaluated on an American sign language �ngerspelling dataset.
However, the improvement of using depth information is not consistent in our system and
the retrieval accuracy is not ideal. Possible reasons are discussed.
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Chapter 1

Introduction

Hands play a crucial role in interaction with objects and people. Hand gestures are fast,
intuitive, and often subconscious means of communication: we use hands to express and
support our thoughts, feelings, or ideas. Sometimes, they are the only way of utterance,
such as in noisy or noiseless environments, over long distances or, importantly, among deaf
or mute people. Here, complex sign languages (SL) have evolved as complete substitutes for
spoken languages. Computer-based recognition of gestures has thus received wide interest
over the years.

Two main applications of automated gesture recognition exist. First, human-computer
interaction (HCI) can allow equipment to be controlled by gestures without any need for
physical contact. The second one is sign language recognition, which is important in many
ways. Some deaf people, particularly those completely deaf from birth, are also not able to
speak and usually have troubles in reading and writing a spoken language. An automated
translation system would make it possible to directly communicate with deaf people both
for untrained humans and for computers. However, the problem is still far from being
solved due to the very high complexity of it.

This thesis concentrates on a small but very important part of the �eld, namely the recog-
nition of hand shapes. A hand shape refers to a speci�c con�guration of the �ngers. In the
context of sign language recognition, the hand shape is regarded as the most informative
element after the location and motion [ten Holt et al. 2009a] and it was shown to improve
the recognition performance when incorporated even in a very crude form [ten Holt et al.
2009b]. Although using simple shape features along with, e.g., motion is common in SL
recognition, explicit detection of hand shapes is rare. The exception is the recognition of
�ngerspelling, a distinct part of a number of sign languages around the world. Here, the
�ngers are used to spell out more obscure words and proper nouns, letter by letter. In this
case, the hand shape is typically the primary determinant of the letter.

The human hand is an articulated object with at least 20 internal degrees of freedom.
Considering the additional 6 rotation and translation parameters and di�erent hand pro-
portions among the population, vision-based hand shape recognition is a very di�cult
problem in its generality [Erol et al. 2007]. However, di�erent levels of accuracy are needed
by di�erent applications. In the case of sign languages, there is only a limited number of
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2 CHAPTER 1. INTRODUCTION

semantically di�erent hand shapes. In particular, there are 41 distinct hand shapes in the
American sign language (ASL) [Tennant and Brown 2002]. In the domain of �ngerspelling
recognition, the restrictions are typically further tightened to a �xed viewpoint and about
25 hand shapes at maximum. For this thesis, we formulate its goal as the recognition of
14 ASL hand shapes1 of an adult male's right hand in arbitrary viewpoints.

In real world applications it is important that the recognition works in a rather uncon-
strained environment. The majority of existing approaches use single or multiple RGB
cameras for data acquisition. This brings about the problem of locating and segmenting
the hand(s). Hence, diverse assumptions are usually made. These include using colored
gloves, long sleeves, uniform background, slow motion, or �xed body poses, to name a few
[Ong and Ranganath 2005].

To overcome some of these restrictions, we investigate the bene�t of utilizing a time-of-
�ight (ToF) camera for this task. ToF cameras acquire depth information using an active
illumination system. The positives lie in a reduced dependence on scene illumination
(especially shadows), practically no restrictions on clothing, and no need to wear special
gloves or have other additional objects attached. However, the current ToF cameras' main
disadvantages are the low resolution, the high level of noise and other artifacts in the
measured signal.

We use depth information exclusively and do not exploit any color data. Besides aiming
to explore how far one can go with depth images only, not all ToF cameras are equipped
with an RGB sensor of an acceptable quality. To allow for fast hand motions, we do a
single frame estimation instead of assuming time coherence.

The underlying hypothesis of this thesis is that classical 3D content descriptors might be
unnecessarily powerful for ToF data. Thus, we extend 2D descriptors speci�cally designed
to operate on ToF depth images. The principal aim of this work is to test this hypothesis.

The main contributions of this work are threefold:

� We propose a novel, domain-speci�c algorithm for segmenting the forearm from the
upper body based on reprojecting the acquired geometry into the lateral view where
separating the two body parts is done by �nding and cutting the gap between them.

� We design a new histogram-based descriptor for capturing the silhouette as well as
the depth information of the segmented hand region. The made design choices are
backed by an extensive evaluation.

� We extend two existing 2D contour matching algorithms to utilize 3D information
and we explore the possibility of combining these with the histogram-based approach.

This thesis is organized as follows. In the rest of this chapter, related work on gesture
recognition with ToF cameras as well as the overview of our approach is given. Chapter 2
gives background information on sign language, hand shape recognition and time-of-�ight
cameras. Additionally, details on our data acquisition process are given. Chapter 3 de-
scribes and evaluates several segmentation algorithms. In Chapter 4, histogram-based and

1The number 14 is a result of the time constraints given to �nish the thesis and is not of a semantic
nature or technological limitation.
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contour-based descriptors are designed. Our synthetic hand shape database is introduced
in Chapter 5. Here, we evaluate di�erent design decisions from the previous chapter and
perform an overall evaluation on test datasets together with a discussion about the results.
Finally, Chapter 6 gives a conclusion of this work and perspectives for further research.

1.1 Related Work

Although the literature on hand gesture recognition is vast, we take into account solely
the hand shape recognition from depth information here.

One of the �rst who worked with depth data for hand gesture recognition were Malassi-
otis et al. [Malassiotis and Strintzis 2008], following a structured light approach. They
described the whole processing chain from the acquisition to classi�cation and are able to
recognize 20 hand shapes while allowing for a considerable degree of out-of-plain rotations.
A hierarchical unsupervised clustering procedure was used to segment the forearm. Next,
two Gaussians were iteratively �t to the forearm to separate the hand. We experiment
with this approach in Section 3.2. Then, the depth image of the hand is recti�ed using the
hand's eigenvectors. Finally, the classi�cation is performed by k-nearest neighbor search
in a space with the dimensionality reduced by principal component analysis (PCA). The
authors explored generating this space with real training data and with synthetic data, the
latter performing worse. A performance of 15 fps is achieved.

Several authors, e.g. [Kollorz et al. 2008, Soutschek et al. 2008], recognized a few static
hand gestures using ToF cameras in a similar frame rate. However, their features were
rather low-level and the viewpoint was �xed.

Recently, a model-based approach was tested on ToF data [Guomundsson et al. 2010] for
handling out-of-plane rotations. The authors used an ellipsoids-based hand model and a
particle �lter tracker on a tracking space with the dimensionality reduced by PCA to the
size of 4. The basis vectors were learned from 3 hand shapes and the transitions between
them. The tracking is initialized manually and runs at about 0.5 fps.

A related area is that of full-body tracking using ToF cameras, which has received more
interest than hand tracking in the research community up to now. For the current state of
the art, see the recent works of [Ganapathi et al. 2010, Knoop et al. 2009] or the trackers
used in commercial products like Microsoft's Kinect.

1.2 An Overview of Our Approach

We base our system on the paradigm of appearance-based recognition. This data-driven
approach requires building a database of images of all hand shapes (classes) observed from
di�erent viewpoints in an o�ine phase. Our database is built by rendering a synthetic 3D
hand model. In online recognition, the hand shape can be retrieved by searching for the
best match between the input image and the database of stored images. The images are
matched by means of descriptors extracted from them. The pipeline is visualized in detail
in Figure 1.1.
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Figure 1.1 � An overview of our hand shape recognition system. Note that all three de-
scriptors proposed in this thesis are visualized here but only one of them is computed at a
moment.

First, we segment the input query depth image to extract the hand with just a small part
of the forearm. Afterwards, we use the hand image to compute a single descriptor of the
hand. We introduce two types of descriptors. The histogram-based approach summarizes
the content of the whole hand region, whereas the contour-based approach works only on
the extracted contour of the hand.

The �nal step is matching of the descriptor with every database image to �nd the nearest
neighbor. The class of the database image is used to as the output of the system.



Chapter 2

Background

In this chapter, we introduce several topics related to this thesis. In Section 2.1, we present
a very light introduction to (American) sign language. Section 2.2 reviews two approaches
commonly used for hand shape recognition. Finally, Section 2.3 gives background on time-
of-�ight cameras. Additionally, details on our data acquisition process are given together
with the necessary notation.

2.1 American Sign Language

A sign language is a communication system using gestural signs as the modality. Sign
languages have developed in deaf communities in a natural way and independently from
spoken languages. Hence, contrary to popular belief, there is no universal sign language.
Instead, a di�erent type of sign language has evolved in every deaf community on its own.
Similarly to spoken languages, there are many national sign languages and their dialects.
Yet, their relations are di�erent than the ones of spoken languages. For example, American
sign language (ASL) is much more similar to French signing language than to the British
one. It should be emphasized that sign language is not a pantomime. Although there are
some illustrative, iconic signs in sign languages as well, most of the gestures are abstract
and not self-explanatory. Sign languages are not limited in its expressiveness to concrete
subjects.

The research on sign languages is rather young. The �rst systematic linguistic studies of
ASL were performed in the 1960's mainly by William Stokoe. Since then, it was shown
that sign languages are actually real languages with a complete linguistic structure, i.e.
phonology, morphology, semantics, and syntax. Afterwards, ASL gradually started to be
taught in American schools for deaf people, replacing the until then forced education of lip
reading (oralism). Later, similar development followed in other countries as well.

The smallest contrastive units in languages are called phonemes, that is, the smallest
units that can distinguish morphemes (units of meaning) from another. In spoken lan-
guages, phonemes bear unique features identifying how and where a sound is created, e.g.,
whether the sound is consonantal or not. In contrast to the acoustic features, sign lan-

5



6 CHAPTER 2. BACKGROUND

guage phonemes are de�ned by a set of visual features. We will review each of them in the
following list:

Location: The signing space is the area in front of the signer in which the signs are
performed, including the face and the upper part of the body. The area can be
partitioned into lexically meaningful areas. Locations in front of the face are common
since �uent signers usually look in the eyes of each other when communicating. The
size of a sign can change depending on its 'loudness'. In ASL, 12 locations are
distinguished.

Hand shape: The hand shape is de�ned by the positions of the �ngers. Theoretically, it
is possible to form a lot of hand shapes, but only a small subset of them are used
in sign languages. Each language de�nes their own semantic hand shapes, although
common ones exist. In ASL, 41 hand shapes are distinguished.

Motion: The motion refers to the trajectory of one or both hands in space. Some signs
are performed with only one hand, the dominant hand. In signs performed with two
hands the non-dominant hand performs a similar movement as the dominant hand
or has a supporting role.

Orientation: The degree of orientation of the palm towards the signer.

Non-manual features: Non-manual components include facial expression, mouthing,
eye gaze, and body posture. They are used for grammatical purposes and to modify
the meaning of signs.

Speech has a linear structure: sentence is a sequence of words and a word consists of a
sequence of sounds. Also in sign languages, signs are produced one after the other to
formulate a sentence. However, morphemes can be expressed simultaneously. The use of
the spatial dimension, in addition to the temporal one, gives additional possibilities to
modify the meaning and in�ection of words.

A distinct part of a number of sign languages around the world are �ngerspelled alphabets.
In many ways �ngerspelling serves as a bridge between the sign language and the spoken
language that surrounds it. It can be mainly used to spell out proper nouns and terms
which do not have established signs, letter by letter. In the case of ASL, the letters are
spelled with a single static hand located near the face, see Figure 2.1. Two letters, J and
Z, include a motion, though. Other letters are characterized by their hand shape and
orientation only.

Supplementary details on ASL can be found in [Klima and Bellugi 1979], for example.
A recent survey of computer-based sign language recognition was published by [Ong and
Ranganath 2005].

2.2 Hand Shape Recognition

The problem of estimating hand shape and orientation from images has been addressed
by many researchers [Erol et al. 2007]. Their approaches can be roughly divided into the
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Figure 2.1 � American sign language �ngerspelled alphabet. Letters J and Z include the
indicated motion. Copyright © William Vicars [Vicars].

appearance-based or model-based categories.

Model-based approaches utilize an articulated 3D hand model for tracking. Usually, this
is done in the analysis-by-synthesis manner by �tting projections of the hand to the input
image. At each frame of the image sequence, a search in the con�guration space is executed
to �nd the best parameters that minimize a matching error, which measures the similarity
between model features and features extracted from the input image. The search is started
using con�gurations from the previous frames and a prediction of the dynamics. In the
�rst frame, this information is not available and a separate initialization procedure is
necessary. Typically, model-based approaches track multiple hypotheses for easier recovery
from mistakes over longer image sequences. Many methods work in con�guration spaces of
lower dimensionality, constructed from training datasets. Although these systems can track
general hand poses, estimate continuous parameters, and achieve viewpoint-independent
recognition, they are often rather slow and require temporal context.

In appearance-based recognition, the task is usually formulated either as a classi�cation
problem or as a retrieval problem. In the former case, machine learning techniques are
utilized to train a set of classi�ers on real-world data ([Lockton and Fitzgibbon 2002] and
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others). The latter approach uses a 3D hand model for building a database of images of
all required hand shapes observed from di�erent viewpoints in an o�ine phase. In online
recognition, the hand shape can be retrieved by searching for the best match between the
input image and the database of stored images ([Athitsos and Sclaro� 2002] and others).
The con�guration space of the hand is sampled discretely. As these techniques generally
su�er from combinatorial explosion of the database, fast search methods are required.
These include local sensitive hashing, learning mappings to lower dimensional spaces, or
indexing techniques, to name a few. Appearance-based methods are typically applied to
problems where the number of discriminated hand shapes is relatively limited.

The current state of art methods go beyond the appearance-based paradigm to allow for
nearly continuous estimation of hand pose parameters. In [Wang and Popovi¢ 2009], the
authors deal with the combinatorial explosion problem by using low-dispersion sampling
to select a sparse database of samples from a dense collection of natural hand poses.
Furthermore, each database sample is linked to a speci�c con�guration and thus it is
possible to compute the estimate by blending the con�gurations of k-nearest-neighbors of
the input image. Additionally, inverse kinematics is used for extra accuracy.

This thesis is based on appearance-based recognition with a synthetic database. Since the
retrieval method is not of the main concern in this study, we use simple exhaustive nearest
neighbor search for retrieval, without any additional hand con�guration re�nements.

2.3 Time-of-Flight Cameras

Time-of-�ight (ToF) cameras are devices used for range imaging, where a 2D image is
produced showing the distance to points in a scene from the camera center. The cameras
are relatively new devices that capture a whole scene at once and have no need for moving
parts, thus o�ering a real-time stream of data. The measurement is based on the time-
of-�ight principle, which clocks the time needed for an actively emitted infrared light to
reach the objects in the scene and becoming re�ected back to the sensor of the camera.

There are two main technological implementations, depending on whether the illumina-
tion is modulated or not. The intensity modulation approach works as follows, see also
the sketch in Figure 2.2a. The emitter sends out a light �eld with a radio-frequency mod-
ulated intensity. Demodulation of the re�ected light is done by sampling. For each pixel,
the phase shift between the emitted and detected wave is computed and based on it the
distance is deduced, modulo the maximum range. To reduce the signal-to-noise rate the
integration values are summed up over many periods. Some of the prominent manufactures
are PMDTec and MESA Imaging, for instance.

This alternative approach is based on a fast shutter technique. The camera repeatedly emits
a short light pulse which is re�ected by the scene in a way which resembles the object's
shapes (see Figure 2.2b). This information can be extracted by gating the returned signal
with a rapid shutter in front of the sensor. The shutter opens for a short time interval
which corresponds to the minimal and maximal distance of interest. The camera then
measures pixel-wise the amount of light received when the gate was open. Additionally, all
re�ected light is captured to measure the re�ectance of the objects. The ratio of the two
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(a) The intensity modulation approach.

Gate interval

(b) The optical shutter approach.

Figure 2.2 � Illustration of ToF camera principles.

values is used to deduce the distance. The measured intensity values can be interpreted
as distance values. The ZCam camera manufactured by 3DV Systems, used in this thesis,
utilizes this technology.

We refer the reader to a relatively recent report of Kolb et al. [Kolb et al. 2009] for further
details.

2.3.1 Sensor-related Artifacts

Besides the rather low resolution (current ToF cameras on the market o�er spatial resolu-
tion of at most 320Ö240 pixels), there are other challenges to overcome.

Noise: The random noise level of the measurements is relatively high, typically in the
order of centimeters. In the case of the ZCam device, we have observed that the
noise gets stronger at more distant objects and also near corners, an e�ect likely
to be caused by vignetting. However, the signer is supposed to sit relatively in the
center of the view and not too far in our videos.

Flying pixels: This term refers to incorrectly measured distances along depth discontinu-
ities. The object seems to melt with its background and precise measurements near
the borders become di�cult, see Figure 2.3. One reason lies in the limited resolution
of the sensor chip: an a�ected pixel averages over the discontinuity as photons both
from the background and the foreground are collected. Moreover, the incident angle
reaches 90◦ near the object borders, resulting in a signi�cant reduction of the number
of re�ected photons and increased noise. Since �ying pixels appear in areas of high
image gradient, we can remove them by thresholding the gradient at appropriate
steps in our algorithms.
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Figure 2.3 � Top view of a 3D point cloud of a signer (orange) with his hand in front (blue).
Note the space between the hand and the body. While its left side represents the forearm, the
right side consists purely of erroneous �ying pixels.

Motion artifacts: In the case of a very fast motion, the boundary of the object may
appear farther as less light gets re�ected.

Systematic distance error: This error occurs only with some intensity modulation-
based cameras due to imperfections in modulating the light.

Ray disturbance: Issues such as multiple re�ections, specular re�ections or direct sun-
light lead to erroneous measurements.

2.3.2 Input Data Acquisition and Preprocessing

In this thesis, we are use a prototype of the product ZCam by 3DV Systems. The
camera captures synchronized color and distance video streams of a spatial resolution
of 320Ö240 pixels at 30 fps. The device requires its user to set an acquisition window, i.e.,
the minimal and maximal distance values to be acquired. The returned distance values
are scaled linearly with 8 bit precision. A signer is expected to sit approximately 120 cm in
front of the camera, which is su�cient to capture his upper body as well as his right hand
signing space. To obtain the highest distance resolution possible, we set the window as
narrow as allowed by the camera, which is 70-140 cm in out case. The theoretical distance
resolution is then about 3mm. However, an experiment done by analyzing 50 frames of a
constant scene has shown that the standard deviation of the noise is slightly above 1 cm.
A 3Ö3 median �lter is used to reduce noise in the measurements.

The camera returns a distance map (also called a range image) R(x, y) : {1, . . . ,M =
320} × {1, . . . , N = 240} → [0, 1], where R(1, 1) corresponds to the value of the pixel in
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Figure 2.4 � The pinhole camera model with the virtual image plane I and principal point
c is used to convert the distance value |OM|, as acquired by the camera, to the corresponding
depth |OC| in the Cartesian coordinate system. The pixel m(x , y) is the projection of the
point M(X,Y, Z).

the upper left corner. The gray level value of each pixel in the distance map represents
the distance along the corresponding viewing ray to a point in the observed scene. Object
farther than τfar = 140 cm appear black while object closer than τnear = 70 cm are white,
see Figure 1.1 on page 4 for an example. Metric distance can be easily computed as

Zray(x, y) = τfar −R(x, y)(τfar − τnear) (2.1)

As suggested above, each grayscale of the acquired data corresponds to a part of a spherical
surface centered at the camera. Since this is inconvenient for our use further on, we
remap the distance values so that each grayscale rather represents a plane in the Cartesian
coordinate system. Let a pixel m(x , y) be the projection of the scene point M(X,Y, Z).
Let O be the origin, c(cx, cy) the principal point, and C the intersection of the optical axis
and a plane parallel to the image plane containing M as depicted in Figure 2.4. We de�ne
Zray = |OM| to be the distance of the point M acquired by the camera and Z = |OC|
to be its depth in Cartesian coordinates. Furthermore, let f denote the focal length in
pixel units and let d(x, y) =

√
(cx − x)2 + (cy − y)2 be the pixel-wise distance of m to the

principal point. The mapping is performed using the pinhole camera equations as

Z(x, y) =
fZray(x, y)√
d(x, y)2 + f2

(2.2)

We can then de�ne the depth image I(x, y) : {1, . . . ,M} × {1, . . . , N} → [0, 1] using the
equation

Z(x, y) = τfar − I(x, y)(τfar − τnear) (2.3)

Several algorithms mentioned in the following chapters need to work with 3D data. In this
case, we can easily backproject the depth image into a metric 3D point cloud {(X,Y, Z)},
again using the pinhole camera model.
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Computing a metric distance between two pixels in the depth image is sometimes required.
Although this can be done by directly returning their distance in the 3D point cloud, such
a distance is rather noisy. Moreover, if we wanted to mark all pixels within a certain metric
radius, the region might consist of many isolated pixels, which could be di�cult to handle.
Hence, to be able to measure metric distances inside a certain region of interest, e.g. in a
segmented hand, we approximate this region by a plane of constant depth and compute
the metric distance in the '�attened' point cloud of the region. We have experimentally
determined the mean depth to be similar1 to the median depth, therefore we use the mean
depth value of the region as it is faster to compute.

1Estimating the depth of the segmented hand on the dataset introduced in Section 3.3, the di�erence
between the two methods was 6±4 mm.



Chapter 3

Segmentation

In the following chapters, we will examine descriptors which are region- or contour-based
in their nature. Therefore, a proper hand segmentation is required as a preprocessing step,
which we approach in this chapter. In the literature, the problem is usually simpli�ed by
making assumptions on the scene settings (e.g., concerning spatial constraints, background,
camera position, or illumination) and the signer (motion restriction, body orientation lim-
its, speci�c clothing, etc.). Especially for 2D images, this is a widely explored topic - see
[Zabuli et al. 2009] for a survey. Common methods in the context of hand detection include
skin color-based segmentation [Jones and Rehg 2002], motion cues [Habili et al. 2004, Holte
et al. 2008], trivial thresholding [Ahn et al. 2009, Haubner et al. 2010], or clustering of 3D
points [Malassiotis and Strintzis 2008]. Additionally, there is a class of object detectors
which integrate segmentation with recognition, such as template matching [Triesch and
von der Malsburg 2002] or algorithms for classi�cation-based object detection [Ong and
Bowden 2004].

As mentioned in the introduction, we restrict ourselves to work with single frames of depth
data only. Using depth without any color information has its advantages and disadvantages.
The bene�t lies in reduced dependence on scene illumination and practically no restrictions
on the signer's clothing. Moreover, unlike in color images [Smith et al. 2007], poses where a
signer's hand occludes his face are much less problematic. On the other hand, poses where
a signer (nearly) touches any part of his body present a challenge, especially without
exploiting any temporal context. However, not relying on neighboring frames enables our
method to handle fast and jerky motion, which is typical for sign languages. The results
can thus be used for initialization and recoveries of tracking algorithms in possible future
applications as well.

To simplify the problem and to make the segmentation more robust we make the following
assumptions on the signer's position to the camera:

Assumption 1: The hand is the closest object to the camera.

Assumption 2: The hand does not touch any part of the body.

Assumption 3: The body is either roughly parallel to the camera plane or twisted with its
active hand's shoulder in front.

13
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Note that this still permits a signer to perform a variety of single-handed gestures as well
as �ngerspelling. Whereas Assumption 1 helps us to easily locate the hand, Assumptions 2
and 3 facilitate segmentation. The task of �nding the hand in other positions could be
solved by one of the recent fast full body trackers such as [Ganapathi et al. 2010, Knoop
et al. 2009] or the trackers used in commercial products like Microsoft's Kinect. Correctly
segmenting touching body parts would still be an issue, though.

Our segmentation procedure consists of two steps: �rst, we segment the forearm from the
body (Section 3.1). Second, we cut only the hand out of it (Section 3.2). In Section 3.3
we will evaluate their performance on a ground-truth dataset. Based on this evaluation,
we will �x the segmentation pipeline which will be used in the following chapters of this
thesis. We will �nish with a discussion on the idea of using multiple segmentation results
at once.

3.1 Forearm Segmentation

Thanks to Assumption 1, hand localization is not a problem and we can rather concentrate
on correctly delimiting it. The task in this section is to �nd a connected subset of a given
depth image I corresponding to the signer's forearm. The hand and �ngers are to be
accurately delimited, while no exact cut-o� position for the forearm has to be computed
since this is will be tackled in Section 3.2. Segmenting also a portion of the arm or only a
part of the forearm is hence acceptable.

In this section, we propose four techniques for segmenting the forearm from a depth image
of the signer's upper body. The methods do not make use of any body or bone model.
They are essentially operating on 2D depth images and all perform di�erent variants of
thresholding. However, note that we go beyond straightforward thresholding planes parallel
to the camera plane: in Section 3.1.3 we design an algorithm for selecting the threshold
for each row of the depth image individually.

3.1.1 Active Contours (AC2&4)

Active contours are a powerful and popular framework for segmentation in computer vision.
The existing approaches can be categorized into two classes: edge-based, also called snakes,
and region-based models.

Edge-based models [Kass et al. 1988] use local image features, typically the gradient, to
stick to object boundaries. First, the contour is manually initialized roughly around the
object of interest. Contour evolution is then guided by the imbalance of an external force
(pulling the contour towards strong edges) and internal forces (controlling contour smooth-
ness, area expansion/contraction and so on). The solution represents a local minimum of
the energy functional. We were experimenting with an implementation of several types of
snakes by D. Kroon [Kroon 2010]. However, we found it very di�cult to set the initial
contour as well as the multitude of parameters to get consistent results across a larger set
of test frames. Therefore, we abandoned this class of models.
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Figure 3.1 � Preference of elliptic components. Despite the abdomen being larger (sabdomen =
5765, shand = 4472), its weighted size is smaller than the one of the hand (1778 and 2141
respectively), and thus it is discarded.

Region-based models [Mumford and Shah 1989] typically assume that the image is par-
titioned into several piecewise constant or smooth regions. Unlike common color images,
depth images theoretically ful�ll the piecewise smoothness assumption relatively well as
they are not disturbed by textures and shadows (ignoring noise issues and other image
acquisition artifacts). Moreover, the models have usually only a few parameters and often
guarantee global solutions. Despite the recent e�orts in speeding up the segmentation of
piecewise smooth images [Bresson et al. 2007, Piovano et al. 2007], we are neither aware
of any paper stating speci�c run times nor we were able to �nd any publicly available im-
plementation which would perform reasonably fast. Therefore, we had to turn to models
assuming piecewise constant images where the recent implementations are capable of run-
ning in the order of hundreds of milliseconds. In these models, the regions to be segmented
are typically modeled as their mean depth values and the methods work well for images
where the ideal segmentation is characterized by regions of quite di�erent depth. Luckily,
this should be more or less ful�lled under our three assumptions above, as the forearm and
the upper body are supposed to be distinct in their depth.

We use a multiphase model of Ayed et al. [Ayed and Mitiche 2006; 2008, Ben Ayed
et al. 2006] which partitions the image into a speci�c number of regions. It turned out
that prescribing 4 regions appears to give reasonable results with 5 iterations necessary to
produce a stable partitioning. Then, the region closest to the camera is picked. This region
often consists of many connected components, though. We propose the following heuristic
which prefers large elliptic components, hopefully being the forearm and not parts of the
head or abdomen. Let λ1 and λ2 denote a component's larger and smaller Eigenvalues,
e =

√
1− λ2/λ1 a component's eccentricity and s its number of pixels. From the set of 5

largest components, the one which minimizes the weighted component size e2s is chosen,
see also Figure 3.1. We will refer to this method as AC4 from now on.

Additionally, we explore a fast implementation [Bresson 2009] of the widely used Chan-Vese
model [Chan and Vese 2001] for binary segmentation. We rescale the input data to 80%
and interpolate back the results to save running time. Note that more aggressive rescaling
might already cause smaller features such as protruding �ngers to be e�ectively ignored by
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(a) Input image thresholded
by taking the �rst 12 cm of
the scene content.
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(b) The image after running
Chan-Vese. Note that the
connection between the ab-
domen and the forearm has
disappeared.
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(c) The result after choos-
ing the largest elliptic com-
ponent.

Figure 3.2 � Active Contours 2

the segmentation1. Essentially, the Chan-Vese model separates the image into two regions
of similar depth while keeping their boundary short. Without any assistance, the two
regions always tend to be the background plane at τfar and everything else. One remedy is
to preprocess the input image: decide on a depth threshold τ and replace all depths larger
than τ by the threshold itself, similarly to raising the water level in a tank, �guratively
speaking. This removes the very isolated mode of maximal depth τfar in the image and
permits Chan-Vese to include some frontal parts of the body into the background region
as the means of the both regions become less distinctly separated. In return, this fact
slightly diminishes the possible consequences of an imprecisely selected τ because often
any connections between the hand and the face/abdomen are destroyed (see Figure 3.2).

Nonetheless, it is very important to select the threshold τ correctly. We use a heuristic
and set τ to cut o� the nearest 12 cm of the scene content. It is an empirical compromise
between the depth of an average hand (about 18 cm [Agnihotri et al. 2006]) when pointing
directly at the camera and the permitted distance between the hand and the upper body,
which we try to minimize. As in AC4, the last step of the algorithm is to select a large
elliptic component from the closer region. This method will be referred to as AC2.

3.1.2 Volume Thresholding (VT)

The method presented in this subsection is a simple thresholding based on the following
observation: if a plane parallel to the camera was placed between a signer's shoulder and
elbow, the body volume in front of it would be more or less constant irrespective of the
actual hand shape. Thus, if we cut o� the �xed amount of body volume Vforearm closest
to the camera, we will segment the forearm. Since only the surface facing the camera is
known, the problem is how to measure the volume given the depth images. We estimate
the upper bound of this volume: given a depth threshold τ , we assume that all objects in
front of τ are extended up to the threshold plane. The volume V (x, y) of a pixel I(x, y) is
then de�ned as the volume of the frustum between Z(x, y) and τ :

1This has proved to be the case with AC4 where downsampling by just 20% led to a loss of quality.
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τ+2

Figure 3.3 � Volume Thresholding (2D illustration, each ray represents a pixel)

V (x, y) = (τ − Z(x, y))
AZ(x,y) +Aτ +

√
AZ(x,y)Aτ

3
(3.1)

where Az is the area of a pixel-sized square projected to depth z.

The algorithm starts by �nding the biggest component within the nearest 5 cm of the scene
content. The threshold τ is then set to this starting depth and iteratively increased by 2
cm. During each iteration, we grow the chosen component up to τ and compute its volume
as the sum of V (x, y) of the component's pixels. See Figure 3.3 for a general idea. The
threshold producing a volume closest to Vforearm is then the solution. Based on practical
experiments, we set Vforearm = 1500 cm3, which is unfortunately a quite signer-dependent
quantity.

The worst case for this upper bound estimation is when the forearm is tilted by 45 degrees
in which case one cuts o� considerably less actual body volume but still, hopefully, at least
the hand.

3.1.3 Scanline Thresholding (ST)

A common property of the methods presented above is that they seek an xy-plane parallel
to the camera (w.l.o.g. upright) which can optimally separate the forearm and the upper-
body apart. However, this may generally fail when the hand is close to the body. In that
case, the face or the abdomen may have nearly the same distance to the camera as the
hand, although the hand keeps a reasonable distance from both of them. This can be well
seen by looking at the pro�le, i.e. the orthogonal reprojection of the data to the lateral
yz-plane. The idea is to �nd a piecewise continuous curve (implying a cutting surface
perpendicular to the yz-plane) in the lateral view separating the hand from the body well.
See the red line in Figure 3.4b for an illustration. We �nd the curve by computing a depth
threshold τi in each row i = 1 . . . N (also called scanline) of the depth image independently
and then enforcing some smoothness. The optimal location to set this threshold is the
middle of the empty space separating the front surface of the hand and the front surface
of the body. Mathematically, we try to detect whether each scanline's depth values come
from a bimodal distribution and, if so, to optimally separate its modes. Note that as we
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are considering the whole scanline for this, we usually have enough information about the
depth of both of the surfaces (using Assumption 3). Scanlines not ful�lling this are to be
dealt with by the smoothing.

An essential preprocessing step is removing �ying pixels since they seriously spoil reliable
detection of the empty spaces between body parts. We do this by removing pixels at depth
discontinuities which are detected by thresholding the gradient. After that we start the
algorithm by computing a histogram over the depth values with 5mm wide bins for each
scanline. For each histogram, we classify its bins as either an object or a gap based on
the number of pixels binned in a 3.5 cm wide bin neighborhood. The bin is labeled as a
gap if this number is less than 10, which was set experimentally. In the histogram of each
scanline i, we determine:

� the position oi of an object-bin closest to the camera,

� the position gi of the �rst gap-bin in the longest uninterrupted sequence of gaps
enclosed between object bins (if there is no such sequence, the furthest one from the
camera is considered),

� and the length `i of the continuous sequence of gap bins immediately behind gi. The
maximum length is set to 20 cm, i.e. 40 gap bins.

Thus, we have obtained one sequence of lengths ` and two sequences of bin positions o
and g (all of length N). The latter two are illustrated as curves in Figure 3.4b.

The next step is to smooth the sequence of gaps g and lengths ` using a median kernel of
size 15 scanlines. Median �ltering preserves distinct discontinuities which are important
in the following step.

We now want to choose a subsequence ga, . . . , gb of some minimal length L = b − a + 1
which is as close as possible to the camera and doesn't contain any big discontinuities (see
Figure 3.4c). Ideally, the range a, . . . , b corresponds exactly to the scanlines containing the
empty space between the hand and the body which we are seeking to cut through.

We proceed in a loop until a suitable subsequence is found. Along the whole g, we �nd
the gap position gs nearest to the camera and proceed to determine a and b, a < s < b,
as follows. We search over all scanlines above s to �nd the lowest scanline a where the
sequence gradient ∇g is larger than a threshold: (∇g)a > Tupper. Similarly, we �nd b below
s such that it holds (∇g)b > Tlower. If L ≤ 10, we assume that the chosen gs does not
belong to the sequence of gaps separating the hand from the body and thus we restart the
search using the nearest gap position outside the current subsequence. We use a sensitive
Tupper = 3 as the hand and the face may be quite near, and a more robust Tlower = 5 for
detecting jumps typically from the elbow to the back.

Once the subsequence ga..gb has been chosen, the whole sequence of scanline thresholds
τ can be computed. Let us explain the computation using Figure 3.4b as an example.
The subsequence ga..gb (scanlines 100-180) is shifted into the middle of the empty space
separating the hand and the body. The thresholds for the scanlines above a (scanlines
1-100) are set to basically propagate ga upwards so that the cut is carried out in front
of the face. Staying in front of the face is ensured by adding half of the median depth
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(a) Input depth image (xy-plane)
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(b) Orthogonal reprojection to the side (yz-
plane), each horizontal line represents a scan-
line's histogram over depth values. The whiter
the bin the more pixels it contains. Bins clas-
si�ed as gaps are shown in blue. The meaning
of the curves is explained in the text.
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(c) The sequences from Figure 3.4b. Af-
ter smoothing, the green subsequence ga . . . gb
likely corresponding to the hand is chosen.
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(d) The result after thresholding the image
and picking the largest connected component.
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(e) Example: despite the index �nger being
classi�ed as gaps, the threshold is correct.
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(f) Example: although a part of the hand is
hidden by the forearm in the lateral view, the
threshold is correct.

Figure 3.4 � Scanline Thresholding
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between the upper end of the hand and the head. The thresholds for the scanlines below
b (scanlines 180-240) are designed to linearly decrease towards the lower right corner, as it
can be seen, e.g., in Figure 3.4f where this way of cutting ensures keeping the lower part
of the hand despite it already being under the b scanline. Formally:

τi =


ga + median(H)/2 i = 1, . . . , a− 1

gi + `i/2 i = a, . . . , b

gb − (i− b) τnear−gb
N−b i = b+ 1, . . . , N

(3.2)

where the set H is given as H = {oi − ga | i = 1, . . . , a− 1 ∧ oi ≥ ga}.

Afterwards, the sequence τ1 . . . τb is smoothed by a large median kernel. Finally, the image
is thresholded and the biggest connected component selected as the result.

As an alternative, we tried using Otsu's algorithm [Otsu 1979] for bimodal histogram
splitting. If the threshold τi proposed by Otsu hits a gap, it is accepted, otherwise it's set
to in�nity (we are most likely dealing with an unimodal histogram then). We �lter the
Otsu's τ the same way as g above to pick the nearest subsequence. The performance on
our test dataset (see Section 3.3) is very similar to the original algorithm with Otsu being
twice as slow, therefore this alternative isn't further considered.

3.2 Hand Segmentation

The forearm segmented by one of the algorithms from the previous section can be of a
relatively arbitrary length, depending on the whole signer's pose. Yet, for further processing
described in Chapter 4 it is convenient to have just the �ngers, palm and a couple of
centimeters of the wrist. We transform the shape into the basis of its eigenvectors using
PCA and we assume that the major eigenvector v1 is more or less parallel along the hand's
pointing direction. Note that due to nonzero forearm lengths this is typically ful�lled for
both open and closed hand shapes. In the following we will discuss three possibilities of
leading the cut, see also Figure 3.5.

Midpoint Cutting is cutting near the origin of the PCA basis, de�ned by the mean
value µ of the segmented forearm region. This was essentially proposed in [Malassi-
otis and Strintzis 2008]: they model the 3D point cloud as a mixture of two Gaus-
sians N(µi,Σi) and obtain their properties as the maximum likelihood estimate via
expectation-maximization (EM). The result depends on the proper initialization.
Both means µi were selected along v1 in a speci�c distance from µ, which was 1/3

(respectively 2/3) of the maximal point cloud distance in each direction. The same
numbers were also used to initialize the variances. We found out that the EM itera-
tions don't change the result too much on our dataset, therefore classifying approx-
imately half of the space as a hand and the other half as a forearm. This of course
heavily depends on the stability of µ with respect to di�erent segmentations, which
is very low in our case.

Proportional Cutting is meant to address this issue. The point having the maximum
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Figure 3.5 � Hand Segmentation

distance to the closest boundary has been argued [Koike et al. 2001] to be more stable
under changes in a silhouette shape than the mean (the center of gravity). This point,
from now on the most inner point (MIP), can be easily found as the maximum rdt
of the distance transform of the silhouette. If there happen to be multiple maxima,
their mean position is taken. As before, we model the shape as a mixture of two
Gaussians: µ1 is set to be the MIP and µ2 to be 5rdt away along v1. The variances
are set roughly equal. We don't run any EM iterations and directly classify. The
method works very well as long as the MIP roughly corresponds to the center of the
palm. This is sadly not the case when either the hand shape is very thin (e.g., a
�at hand perpendicular to the camera plane) or the whole elbow gets segmented,
possibly with a piece of the body or the arm.

Top Cutting is as simple as taking the �rst 24 cm of the content (130% of the average
hand length [Agnihotri et al. 2006]), measured along v1. The disadvantage is that
di�erent hand shapes, such as an open hand and a closed �st, yield di�erent forearm
lengths then. For example, there are problems with hands pointing towards the cam-
era, see Figure 3.7c. However, as this approach performs consistently well through
all hand shapes and poses of our dataset, we have decided to use this method. We
run this algorithm on 2D data to save some running time with only a slight loss of
cutting quality.

Note that we have implicitly assumed that v1 is oriented along the hand. However, the
sign of v1 is not de�ned and is PCA implementation-dependent. We use a heuristic to
solve this by looking at the gradient along the contour of the segmented region in the
original depth image. The observation is that the hand-end is typically surrounded by
depth discontinuities while the forearm-end has been cut more or less arbitrarily and a
smooth surface is expected there. The implementation compares the median gradient of
the contour within the �rst and last 5 cm of the shape along v1 and orients the major
eigenvector to point towards the �ngers. The method works as expected on the absolute
majority of frames in our segmentation test dataset. In one frame the orientation was
�ipped, which of course a�ects any further processing.
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(a) An RGB image from the
test dataset.

(b) The corresponding depth
image.

(c) ST segmentation result
in blue, red being the ground
truth from a).

Figure 3.6 � Empirical evaluation

3.3 Empirical Evaluation

In this section we evaluate the computational and qualitative performance of the four seg-
mentation methods presented in Section 3.1 while using 'top cutting' as hand segmentation
for all of them.

The implementation of the segmentation was done in Matlab 7.4.

We have acquired both color and depth video of a person performing 11 �ngerspelled letters
with his right hand in three di�erent locations: next to the body, near the face and near
the camera. The test dataset contains 383 equidistantly sampled frames. The signer wears
a green surgical glove, based on which the ground truth silhouette (GTS) is generated. The
glove was automatically segmented by a learned 'skin'/background Gaussian model and
manually corrected for imperfections afterwards. The ground truth is however not perfect
due to the very poor image quality of the RGB camera. Moreover, the RGB camera has
a longer exposure than the Z camera and the images appear not to be synchronized in
time in the case of fast hand movements. Additionally, the RGB and Z cameras are not
properly calibrated, the fact also observed by [Schuon et al. 2008], which we compensate
for by manual tweaking. Nevertheless, a comparison to the GTS gives a rough estimate of
the segmentation quality.

We consider seven benchmark criteria:

Run time per frame is the average run time in milliseconds for the whole segmentation
pipeline measured by Matlab's tic-toc on an Intel Core2Duo P8400 laptop with 2GB
RAM.

Misses is the relative number of the frames when the GTS and the segmentation result
have no intersection (Figure 3.7a).

The following metrics are averaged over the frames which are not classi�ed as misses.

Pixel-wise precision measures the fraction of true positive pixels in the silhouette pro-
duced by the segmentation.
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AC4 AC2 VT ST

Run time per frame 336ms 216ms 93ms 124ms

Misses 30% 36% 35% 26%

Pixel-wise precision 60% 88% 84% 91%

Pixel-wise recall 86% 81% 87% 84%

Pixel-wise F-measure 0.70 0.84 0.85 0.88

Pixel-wise overlap 55% 75% 74% 77%

Shape �aws 52% 6% 11% 9%

Table 3.1 � Evaluation results.

Pixel-wise recall measures the fraction of the GTS segmented.

Pixel-wise F-measure is the harmonic mean of precision and recall and constitutes a
summary score for the algorithm.

Pixel-wise overlap is the ratio |GTS ∩ result | / |GTS ∪ result |.

Shape �aws is the relative number of frames where the important part of the hand is
either incomplete or connected to a part of the head. This is a subjective measure
evaluated by the authors.

The results can be seen in Table 3.1. Our implementations unfortunately won't allow rates
faster than 10 fps for the whole system. About 40 ms of each run time per frame is the
time taken by the 'top cutting' algorithm. Besides the external AC solvers, the biggest
drags in performance are convolutions, gradient computations and possible morphologi-
cal operations. We believe the run time would considerably decrease by using a fast C
implementation of these.

For all methods, something di�erent than the hand is segmented in roughly one third of the
frames. These are the poses where the hand is besides the body, which violates Assumption
1 about the hand being the nearest object.

AC4 has shown to have the distinctly worst performance both in time and quality. The
forearm is usually segmented together with a large part of the body, which explains the
high recall and low precision. This suggest that applying otherwise powerful methods
without any prior knowledge is insu�cient.

AC2 gives one of the best results. The credit goes to a relatively conservative threshold that
ignores the hand unless it is quite in the front, which results in the largest percentage of
misses. As noticed in Section 3.1.1, pure depth thresholding can create a lot of connections
(also called bridges, see Figure 3.7b) between the hand and the upper-body when the hand
is close to them. While the active contour method can typically manage to break those
leading to the face, many of those linking the forearm with the abdomen are preserved.

VT is the fastest algorithm and its threshold appears to be conservative too, with a similar
number of misses as AC2. The quality is slightly lower, though. This is due to the fact that
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(a) A miss: the head is preferred as it is closer
to the camera (ST).

(b) A bridge: the forearm is connected to a
part of the body, confusing the successive PCA
analysis (VT).

(c) A common problem with tilted hands: �n-
gers are not distinguished from the forearm
behind them (ST).

(d) An incomplete segmentation when the
hand is only marginally closer than the face
(ST).

Figure 3.7 � Segmentation failure examples. Proposed segmentation is in blue, ground truth
in red. For a correct segmentation, see Figure 3.6c.

when the region of interest is accidentally grown into a part of the body via some noisy
bridges, its volume is expanded beyond the threshold. This leaves the hand's more distant
parts (e.g., thin �ngers which sometimes appear further than they really are with the 3DV
camera we use) being not fully segmented. Unlike AC2, no active contour computation is
used to break even the thinnest bridges, and thus it's precision is the second lowest in our
test.

ST is the winner in terms of quality. While its shape �aw percentage is only the second
best to AC2, ST has the lowest amounts of misses. We have determined that if ST was to
process only the frames not missed by AC2, its shape �aw percentage would be superior.
Moreover, as the run time is acceptable among the compared methods, ST segmentation
has been chosen and used in the following chapters.
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Figure 3.8 � An example of MSER regions ordered in a component graph tree. Note the
component showing the hand only.

3.4 Segmenting Multiple Hypotheses

Our system's processing pipeline is designed in a manner where the recognition strongly
depends on the quality of the segmentation, which is done without any high-level under-
standing of the segmented region. Ideally, we would like to segment the hand in a way
which would provide the best matching to a certain database element. In this section we
contemplate the possibility of keeping multiple hypotheses and postponing the decision on
the correct segmentation to the recognition phase. To accomplish this, a relatively low
number of segmentation candidates is chosen and a descriptor of choice is computed for
each of them. The set of descriptors is then compared to a database and the most similar
match is taken. Note that this is di�erent to trying to �nd every database pose/class in
the input image and choosing the best score, as proposed in [Triesch and von der Malsburg
2002].

We choose a set of candidates using a thresholding strategy again. Instead of sampling
thresholds every 2 cm as with the VT algorithm, we used an implementation [Vedaldi and
Fulkerson 2008] of maximally stable extremal regions (MSERs) [Matas et al. 2004]. Each
MSER is a connected component with an area stable over a range of depth thresholds. The
extremal regions can be ordered in a component tree by the inclusion relationship. The
root includes all pixels of the input image and and each of its children was extracted using
a lower depth threshold, see Figure 3.8 for an example. This provides us with a relatively
low amount of hypotheses, usually under 15 with our selection of parameters. We have
observed that at least one region typically corresponds to the forearm in our settings. More
speci�cally, the best MSER hypothesis was manually chosen for each frame from the test
dataset utilized in the previous section and the result benchmarked to obtain a pixel-wise
F-measure of 0.85 with miss rate of only 18%. This shows that when being able to select
the correct region, the overall quality of the result might outperform the methods above.

To obtain an automated selection of the correct MSER, we have conducted two experiments
using the descriptors introduced in Chapter 4. First, we compared the descriptor of every
MSER to our database and selected the one with the minimum distance. Second, we
extracted MSERs from our database consisting of rendered hand images (Chapter 5) as
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well and then tried to match the sequence of database MSERs2 against each branch of
the component tree generated by the query. The distance was then aggregated for every
branch (e.g., a mean over the matches) and the best branch was eventually chosen.

However, the performance in terms of classi�cation accuracy of the whole recognition
process, as evaluated in Chapter 5, was worse than with a single segmentation hypothesis
consistently over all descriptors. The run time was obviously longer as well. One possible
explanation is that due to the broad variety of hand shapes under di�erent viewpoints it
is relatively easy for a segment of an unrelated body part to spuriously match a certain
database element well enough to win over any semantic match. Moreover, the MSERs
extracted from the database images often appeared to be visually di�erent from those
obtained from real depth images, an issue likely to be caused by the perfect quality of the
rendering. For example, �ngertips pointing towards the camera were often an MSER in
database images, which has been never been observed in real data. One of the possible
improvements is to add a hand/no-hand classi�er similar to [Ong and Bowden 2004], which
would reduce the number of hypotheses leading to a lower run time and hopefully a better
accuracy. Investigating this is left to future work, though.

2It was assured that the database component tree is actually linear.



Chapter 4

Hand Descriptors

The research on content-based retrieval using regions of interest descriptors is vast. Tech-
nically, both 2D and 3D approaches are applicable to depth images as it is possible to
easily convert between the two representations.

3D content can be described either globally or locally [Tangelder and Veltkamp 2004],
generally speaking. Global methods aggregate information across the whole content, often
in the form of statistical moments or Fourier transform coe�cients, whereas local feature-
based methods describe the 3D shape around a number of surface points. Global 3D
descriptors do not seem to be appropriate since complete 3D models are required and this
is rarely the case with 2.5D depth data. However, new global, object's centroid-based
descriptors designed for ToF depth images have been published recently in the context of
body tracking [Schwarz et al. 2010]. Local descriptors are extracted on some distinct key
points and utilized for complete or partial surface matching. Surface properties, such as
curvatures and normals, are typically used to detect key points and certain features of the
neighborhood are summarized in a histogram. Examples in the context of range images
include [Bayramoglu and Alatan 2010, wai Rachel Lo and Siebert 2008, Taati et al. 2007].
However, to the best of our knowledge, all papers use high quality (typically LIDAR) data
for evaluation and it is unclear how the descriptors would perform on ToF depth images,
which have more challenging noise characteristics.

Although most of the latest papers utilizing ToF cameras concentrate on exploring the
3D nature of the data, we want to investigate the opposite approach in this thesis. The
hypothesis is that 3D descriptors might be unnecessarily powerful for 2.5D and extended
2D descriptors speci�cally designed to operate on ToF depth images might perform well
enough. We set our thesis in the context of appearance-based methods where the 3D object
(i.e., the hand) is represented by multiple projections, as described in Chapter 2. Here,
the goal is to match an input depth image to one of the database images using 2D or 2.5D
features.

There have been numerous 2D image features proposed for various computer vision appli-
cations. To gain an overview over the state-of-the-art we refer to the survey papers [Roth
and Winter 2008, Yilmaz et al. 2006]. In the following, we describe the presegmented hand
shape by its contour and by depth histograms of its interior. Note that as in Chapter 3, we
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are using depth images only without any color clues. However, unlike with segmentation
where the color might be a source of confusion, the additional color information would be
of a bene�t here, especially for the description of the hand's interior. The reason is that
the human hand is relatively textureless by itself and any edges might provide additional
hints on the �nger position, particularly for closed hand shapes. Nevertheless, the goal
here is to investigate how far one can go with depth information only and, moreover, not
all ToF cameras are equipped with an RGB sensor of an acceptable quality. Evaluating
the bene�t of color data is a part of our future work.

The design objectives for a descriptor appropriate for an appearance-based hand shape
recognition are as follows:

� Exploit depth information.

� Gain invariance to translation, scale, and in-plane rotation. Invariance to re�ection
or distinct out-of-plane rotations is not demanded.

� Be sensitive to local features, such as �nger positions and angles, while being robust
to sensor noise, minor segmentation artifacts, inexact wrist delimitation, and subtle
changes in viewpoint or hand pose.

� Keep computational time as low as possible, both for extraction and matching.

We assume that the hand was segmented accurately, and thus its contour is supposed to
be correct, while we still allow for a certain variation in the hand/forearm cut. Moreover,
we do not expect any occlusions.

The chapter is structured as follows. In Section 4.1 several descriptors capturing the 2D
interior of a hand are presented, while in Section 4.2 descriptors based on contours are
introduced. In the last section, we discuss methods that aggregate both approaches.

4.1 Distribution-based Region Descriptors

In this section, several descriptors capturing the 2D interior of a hand are proposed. In
contrast to silhouette shape descriptors, the actual depth variations of the hand area is
also expressed. The method introduced in this section places a single histogram-based
descriptor at the hand's central point. We present several variations in the design and
content of the histogram. We do not treat any parts of the hand special in terms of, e.g.,
explicitly detecting �ngers [Al-Hamadi et al. 2010] as we believe this might decrease the
overall robustness of the method in case of misdetections.

4.1.1 Estimation of the Center, Radius and Orientation

Our experience shows that the robust localization of a centralized descriptor is one of the
crucial factors determining the overall retrieval accuracy. Although the literature nearly
unanimously proposes the centroid (the center of gravity or, equivalently, the component-
wise mean) as the point of interest, other options exist.
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v1

12 cm

Figure 4.1 � A general idea of a centralized descriptor design: median-shift algorithm used
to �nd the location, 12 cm radius and orientation by the major eigenvector v1.

For example, the geometric median, which generalizes the 1D median as the point mini-
mizing the sum of distances to the sample points, is one of them. It can be computed using
Weiszfeld's algorithm [Weiszfeld 1937], a form of iteratively re-weighted least squares. Note
that simply taking component-wise median of pixels coordinates is not rotation invariant.

The point having the maximum distance to the closest boundary (MIP) has been argued
[Koike et al. 2001] to be more appropriate for de�ning the center of a hand. We refer the
reader to Section 3.2 for more details.

Wang and Popovi¢ [Wang and Popovi¢ 2009] use a mean-shift algorithm with a uniform
kernel and variable bandwidth to crop the hand out of an image. We follow their imple-
mentation: we start at the centroid of the hand with a bandwidth that spans the entire
depth image. After each iteration, the bandwidth is adjusted as a multiple of the standard
deviation σ of the distances of pixels within the current bandwidth to their mean. In our
case, 4σ is used. This procedure is iterated until convergence of the mean.

Additionally, we explore a variant with the bandwidth set to 12 cm. Its corresponding
pixel-wise distance is recomputed at each iteration based on the mean depth of the pixels
within the current bandwidth. Finally, we also use the geometric median instead of the
arithmetic mean to produce a median-shift algorithm.

We have evaluated all six proposed methods in a comprehensive benchmark in Section 5.3.
Based on the evidence, median-shift algorithm with a uniform kernel and 12 cm bandwidth
has been chosen. The bandwidth is used as the radius of the descriptor as well. Since the
average hand length is about 18 cm [Agnihotri et al. 2006] and we assume that the geometric
median isn't too far from the center of the palm, the diameter of 24 cm should be able to
accommodate the whole hand in any pose and viewpoint. Note that the fact that the
radius is de�ned in centimeters and not in pixels facilitates scale invariance. Unlike radii
based on the mean distance of pixels to the center of the descriptor, a �xed radius is more
robust to confusing open and closed hand shapes.

Additionally, we make the descriptors rotationally invariant by orienting them along the
major eigenvector v1 of the segmented hand. The general idea can be seen in Figure 4.1.



30 CHAPTER 4. HAND DESCRIPTORS

(a) Circular con�guration (b) Grid con�guration

Figure 4.2 � Example descriptor cell con�gurations

4.1.2 Descriptor Representation

The location c = (cx, cy, cz), radius r and orientation impose a local 2D coordinate system
in which we describe the image region, and therefore facilitate invariance to these parame-
ters. The next step is to compute a descriptor that is distinctive and robust to remaining
unimportant variations.

We address the descriptor's design from two rather orthogonal perspectives: the binning of
image features into spatial cells and the actual representation of the features in each cell.
The features are extracted for every pixel of the hand (x, y) and are either the pixel's depth
I(x, y) or its gradient magnitude |∇I(x, y)|. The gradient is computed using centralized
di�erences on a segmented hand's image presmoothed by Gaussian kernel with σ = 4 px,
where the in�uence of pixels outside the hand is ignored.

There are two main trends in the layout of cell con�gurations of a descriptor, namely the
circular and grid ones, see Figure 4.2. A circular layout (e.g., [Belongie et al. 2002]) has
often been used as a local descriptor in a log-polar fashion, which aims to cope with the
increasing spatial uncertainty of distant pixels due to possible image deformations around
the point of interest. In our settings, however, the informative parts of the hand, i.e. the
�ngers, are often located further away at the boundary. Therefore, we use a circular layout
with regular rings. Note that despite this, the outer cells are larger than the inner ones
due to the longer circumference of the outer rings.

A regular grid layout (e.g., [Lowe 2004]) is the other option. We use a square layout with
its side length equal to 2r. The cells are of the same area everywhere in the grid.

We believe that the circular layout might be more invariant to slight rotations of the
hand about its center, whereas the grid layout could be more robust to small translations.
Regarding the implementation, no anti-aliasing technique for reducing sampling artifacts
is used. Still, due to the relatively large area of the cells and using aggregating functions as
histogram or mean of the cell content (described below), the descriptor should not change



4.1. DISTRIBUTION-BASED REGION DESCRIPTORS 31

too abruptly when some pixels shift from one cell to another. Any part of the depth image
outside the descriptor's radius is ignored.

Four alternatives of cell content representations are considered:

Point count (PC) is simply the number of pixels in a cell. The vector of point counts
for each cells is then normalized to unit length to account for di�erent scalings. This
representation utilizes the silhouette only and is of a similar concept to occupancy
maps, where the normalization is performed cell-wise by the area of each cell. We
have not found consistent di�erences in accuracy between the two normalizations in
our experiments.

Mean depth di�erence (MDD) is the di�erence of the mean depth value within the
cell to the mean depth cz of the whole histogram. Only pixels not marked as �ying
pixels are considered, which is accomplished by thresholding the gradient of the whole
depth image.

Depth histogram (DH) is a normalized histogram of depth values inside the cell. The
motivation is that simple mean depth is prone to canceling of di�erences with opposite
signs. For example, a hill and a valley within a cell could then be similar to a �at
area. Using a histogram avoids this problem. We use 5 bins centered around cz with
bin diameter set to 2 cm of depth, the double of standard noise deviation. Votes are
interpolated linearly between the neighboring bin centers to reduce aliasing. Again,
�ying pixels are discarded.

Mean gradient magnitude (MGD) is the mean gradient magnitude within the cell.

Each of these representations produces a vector of measurements which is then to be
compared with others. We were experimenting with a range of distance metrics, namely
the L1 and L2 distances, cosine distance, and measures appropriate for histograms (χ2

and histogram intersections). Surprisingly, the di�erences in accuracy during evaluations
against the training set (Section 5.2) were more or less negligible or spoke for the Lp

distances. For that reason, we work with L2 distances in any further evaluation.

Additionally, we need to compensate for di�erent cell signi�cance in all representations but
the point count. The reason is that these cells do not re�ect any reliability information:
a mean computed from 1 pixel is represented the same way as a mean of 1000 pixels.
Therefore, we weigh the distance contributions of each cell by their respective relative
point count. Formally, let vectors p and q be two descriptors of D cells, pi,qi ; i = 1, . . . , D
their cells, and npi , nqi relative counts of points in each cell (similar to the normalized
point count vector but accounted for �ying pixels). Then the distance between p and q is
computed as ||(p− q)wT|| where w is the weight vector with

wi =
2

π
arctan(500

npi + nqi
2

)

The function, the plot of which can be seen in Figure 4.3, is designed so that it reduces
the in�uence of cells having less than approximately 0.5% share of the points. The con-
stant was set experimentally. This weighting consistently increases the accuracy of the
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Figure 4.3 � Weighting function used to reduce the in�uence of cells with low relative point
count when computing distances between two descriptors.

three representations considered. Another option is to use absolute point counts and a
di�erent constant in the weighting function. However, this has been shown not to perform
consistently worse or better.

The evidence in Section 5.4 shows that the circular con�guration of size 4Ö28 cells has the
best performance. Moreover, silhouette-only point count representation is distinctly better
than other representations. However, in a strive for utilizing any depth information, we
further combine it with the mean depth di�erence representation in Section 5.4.1 to gain
a slight improvement in performance. Our �nal distribution-based region descriptor thus
consists of both representations.

4.2 Contour-based Descriptors

Contour-based descriptors capture only the points sampled along the boundary of a shape.
As an alternative to histogram-based region descriptors, we propose two algorithms based
on partial contour matching in this section. First, we explain the reasons suggesting the
use of partial matching. Afterwards, our method of extracting sequences of 3D contour
points is presented in Section 4.2.1. Finally, we describe both algorithms in Sections 4.2.2
and 4.2.3.

Most of the current research tries to achieve excellent retrieval of relatively complicated
shape classes with high intra-class variability. However, the classes are typical quite dis-
tinct, as in, e.g., MPEG-7 silhouette database, which is currently one of the popular
databases for shape matching evaluation. On the contrary to this, our task is to discrimi-
nate among hand silhouettes of di�erent hand shapes captured from di�erent perspectives,
i.e., to distinguish a lot of very similar classes of nearly no intra-class variability. This
raises two issues which are discussed in the following.

First, contour has to be represented quite accurately in order not to easily match a too
broad set of shapes. This is, however, not the case for all methods. For example, we
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were experimenting with shape contexts [Belongie et al. 2002] in the initial phase of this
thesis. Their approach works by sampling points along a contour and extracting a log-polar
histogram, so called shape context, of the relative positions of the other points at every
sampling point. To reduce the complexity of �nding pairwise correspondences, we use the
vector quantization technique [Mori et al. 2005] which �rst �nds a set of canonical shape
contexts, called shapemes, by clustering and then labels each shape context of every shape
by its nearest shapeme. The whole shape is thus represented only by a histogram of labels,
which is a representation much faster to compare. Even though this is reported to perform
well on general datasets, we have determined that the loss of exact spatial and ordering
information allows for too much generalization in our settings. Moreover, the results were
quite dependent on the particular set of shapemes.

Second, restricting the generalization power inherently leads to sensitivity to artifacts in
the contour, especially to changes in the topological structure of the shape. For example,
unlike with histogram-based descriptors, merging or splitting two closely adjacent �ngers
poses a challenge as the contour, i.e., a linear sequence of points, suddenly gets much
shorter or longer. Note that this is not only a noise-related issue but also the result of
a high instability of the contour with respect to marginal changes in viewpoint or small
�nger movements. We deal with this unfortunate behavior in three ways. First, by having a
reliable segmentation step. Second, by having a dense viewpoint sampling of our database
hand shapes, which increases the probability that such a topologically perturbed contour
actually matches to a contour of the same hand shape, just from a di�erent viewpoint. Last,
we do not match the whole closed contours but rather use algorithms for partial matching,
which should prevent the distorted parts of the contour from ruining the matching process

The aim of partial contour matching is to identify parts of two shapes that are similar to
each other. In our case, these are the reference hand contour from the database and the
contour of the segmented query hand. We considered the IS-Match algorithm [Donoser
et al. 2009], the bene�t of which lies in local matching and in an accurate representation of
the contour geometry during the matching process. IS-Match represents the contour as an
ordered sequence of sampled points and the descriptor is based on angles which describe
the relative spatial arrangement of these points. Further details are given in Section 4.2.2
where we extend a follow-up paper [Riemenschneider et al. 2010] to exploit 3D information.
The IS-Match algorithm evaluates all possible matches for all possible lengths and returns
a set of subsequence correspondences between the two contours. However, this set has to be
translated into a single distance metric for our task of shape retrieval. The authors propose
to compute two quantities for each match: its partiality and dissimilarity. Afterwards,
the match minimizing the sum of both metrics is found and the sum is declared to be
the distance. Unfortunately, the authors do not provide enough details about the exact
computation of the quantities. The minimizing subsequences were either too long or too
short in our experiments, depending on whether we normalized the quantities or not, both
resulting in a suboptimal retrieval performance. In particular, shorter subsequences have
shown to be prone to wrong matching of semantically di�erent parts of the hand's contour.

This experience made us to limit the freedom of the matching as follows. We constrain the
general matching problem to a template matching problem of �nding a speci�c sequence
of points in a given contour. Speci�cally, for every image in our database, a single rigid
continuous sequence of pointsCDB is extracted from the contour of the hand. The sequence
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(a) The contour of hand shape B (left, zoom-in) and the depth pro�le (right).
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(b) The contour of hand shape C (left, zoom-in) and the depth pro�le (right).

Figure 4.4 � An example where a di�erent depth pro�le of the contour can help to distinguish
otherwise relatively similar silhouettes. Each magenta point represents a sample point. The
green circle indicates the starting point of the sequence for clarity. Depth images are synthetic.

corresponds to the semantically important part of the hand shape, which is the region of
the palm and the �ngers, see Figure 4.5 for an example. In the query image, this sequence
is then searched for in the closed contour of the segmented hand CQ. We proceed by
explaining the details.

4.2.1 Contour Extraction

First, we represent the shapes by a sequence of points sampled equidistantly from the
contour. The sampling step is set to 1 cm. By using a metric distance, our method
becomes scale invariant as more or less the same number of points is sampled regardless of
the distance of the hand to the camera (for the same hand pose). To �nd the distance in
pixels corresponding to 1 cm, we approximate the segmented hand as a plane of constant
depth - see Section 2.3.2 for details. The alternative, measuring the pixel-wise distance
locally for each sample point based on its neighborhood patch, was experimentally shown
to hamper the accuracy of both algorithms presented in the next two sections.
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Figure 4.5 � Automatic choice of the contour for generating database sequences. The
hand/wrist transition is left out.
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Figure 4.6 � An example of a real image captured by the camera (zoom-in). The red points
indicate the likely forearm transition and are to be penalized in the subsequent matching.

The depth of each sampling point is determined as the Gaussian average (σ = 1 cm) of its
neighborhood renormalized to ignore any pixels outside the hand. Flying pixels, detected
by thresholding the gradient of the whole depth image, are discarded beforehand. See
Figure 4.4 for an illustration of contours' depth pro�les. Finally, the points are back-
projected to their 3D metric coordinates ci to gain a sequence C = (ci).

As already mentioned, the sequencesCDB in our database corresponds to the outer contour
of the hand only, see Figure 4.5. We detect the outer contour automatically. As described
in Section 5.1, the 3D model used to generate all synthetic images in our database consists
of both the hand and a part of the forearm. However, the hand is textured in blue color,
which enables us to �nd the contour of the blue hand and mark its points which border
on the skin-colored part of the model. The longest subsequence of the bordering points is
then removed. In addition, to successfully handle the rare cases when �ngers are in front of
the forearm, we do not mark the points if the border is actually a depth edge (speci�cally,
of 7 cm or more).

To further reduce the risk of spurious matches, especially those between the hand and the
forearm, we adopt a similar strategy also for the query contour CQ. We �nd a subsequence
of 5 'unstable' points F ⊂ CQ (ignoring possible circular shift for the sake of clarity) which
is likely to correspond to the transition between the hand and the forearm, see Figure 4.6.
Matching with these unstable �ve points will be penalized (but not impossible) when
aligning the contours later. The actual selection is done by computing the gradient at each
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point and choosing the subsequence of 5 points minimizing the sum of the gradients as
this should be the only part not lying on a depth edge. A similar idea was introduced for
hand segmentation in Section 3.2.

4.2.2 Alignment by IS-Match

The task is to align a template sequence of pointsCDB = a1, . . . , aK with some subsequence
of a query contour CQ = b1, . . . , bL and to return their distance d. We assume that K ≤ L
otherwise we return no match, i.e. in�nite distance d. Since the query contour is closed
and we do not want to miss matches going over bL to b1, we unwind it into a non-closed
sequence C̃Q = b1, . . . , bL, b1, . . . , bL of length 2L.

In this section, we utilize the IS-match algorithm for non-closed contours [Riemenschneider
et al. 2010] adapted to exploit 3D coordinates of the sampled points. Riemenschneider et
al. use a matrix of angles which encode the geometry of the sampled points. Since angles
are preserved by a similarity transformation, this descriptor is invariant to translation,
rotation and scale. They calculate angles βij between a line connecting the points bi and
bj and a line to a third point relative to the position of the previous two points. The angle
is de�ned as

βij =


](bibj , bjbj−∆) i < j

](bibj , bjbj+∆) i > j

0 abs(i− j) ≤ ∆

(4.1)

fi = 5 is an o�set parameter of the descriptor, see Figure 4.7 for an illustration. The
third point is always chosen to lie between bi and bj . The angles are calculated for every
pair of points along the contour C̃Q, thus building a matrix B = (βij) of size 2LÖ2L, see
Figure 4.8b. Similarly, we compute the matrix A = (αij) for CDB.

However, while the original paper [Riemenschneider et al. 2010] computes angles in the
image plane, we measure the angles in the 3D plane de�ned by each triplet of selected
contour points. The di�erences in the angles are subtle, usually within 10% of the range, see
Figure 4.8d. We also experimented with other extensions, such as statistically summarizing
the depth content of each triangle bibjbj±4 or explicitly representing angles in planes
perpendicular to the image plane in addition to the original angles. The variations caused
a distinct decrease in the method's accuracy, though.

Having matrices A and B, the optimal alignment can be computed. Due to the selection
of the third point to lie between bi and bj , any square block in B starting at its main
diagonal describes the corresponding subsequence in a self-contained way. Therefore, we
extract L square blocks of size KÖK from B starting at Bii for i = 1, . . . , L and compare
each of them to A by mean squared error. In addition, we penalize each comparison by the
number of unstable points F (Section 4.2.1) in the considered subsequence. The minimal
error is set as the distance d.
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(a) i < j (b) i > j

Figure 4.7 � An angle is measured between any two sampled points bi and bj . The illustrations
are taken from [Riemenschneider et al. 2010] with a slight modi�cation.
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Figure 4.8 � The original and adapted IS-Match algorithm.

4.2.3 Alignment by Procrustes Analysis

As an alternative to IS-Match, we exploit Procrustes analysis to solve the same problem,
i.e. to align a template sequence of points CDB = a1, . . . , aK with some subsequence of
query contour CQ = b1, . . . , bL, K ≤ L, and to return their distance d. Let us restate that
we are working with 3D points.

The constrained orthogonal Procrustes analysis is a method which can be used to determine
the optimal translation, uniform scaling and rotation to align two point clouds with S
paired points. In the following explanation, let us denote X3×S and Y3×S the two point
clouds in their matrix form. First, both point clouds are normalized in translation and
scale. The translational component is removed by subtracting the mean of each point
cloud, whereas the uniform scaling factor is found as

√
tr(XTX), equivalently for Y. The

rotation matrix can be found as a closed-form solution utilizing the SVD of XTY ∈ R3×3,
which can be computed e�ciently. The error metric, being the sum of squared distances
(SSD), is then computed on the rotated result.

Originally, we were experimenting with the Kabsch algorithm [Kabsch 1978], which solves
the same problem but without any normalization in scale. The reasoning was that no
scaling is necessary since the contours are located in a metric space, thus of a proper size,
and any non-semantic scaling would increase the rate of false matches. Hence, we were
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surprised at the fact that normalizing the scale actually increased the retrieval accuracy,
especially due to a better separation of open and closed hand shapes.

The algorithm works as follows. We extract L subsequences of length K from CQ starting
at bi for i = 1, . . . , L (circularly shifting the sequence if necessary) and align each of them
to CDB independently. Similarly to IS-Match, we penalize each comparison by the number
of unstable points F (Section 4.2.1) in the considered subsequence. The minimal error is
set as the distance d.

Note that as we are basically matching all database template sequences to all L starting
points on the query contour, it is worth optimizing the �ow. First, we normalize database
sequences in scale and location o�ine. Additionally, we preprocess the query contour
sequence by extracting all subsequences of a certain set of lengths, normalizing and storing
them in a cache. This way the normalization is computed only once per a speci�c length
of database sequences, regardless the number of such template sequences. We precompute
the subsequences for every template length in the database. Furthermore, we discard
subsequences having their end points farther than 10 cm apart during the preprocessing.
This is valid as all templates are relatively closed in this sense (their end points are only
separated by the synthetic forearm) and thus a good match to a line-like subsequence is
excluded anyway.

4.3 Ranking Aggregation

In the previous sections, we have presented two di�erent approaches to extract discrimina-
tive information from a depth image of a segmented hand, namely the region descriptors
and contour-based descriptors. They concentrate on di�erent parts of the image and are
sensitive to di�erent artifacts in the image. Therefore, each approach has its own bene�ts
and disadvantages. For instance, the computation of the central point, radius and orien-
tation is required for region descriptors. On the other hand, region descriptors can be fast
and easily compared using the L2 distance, whereas the presented contour-based meth-
ods require computationally intensive alignment to try all possible superpositions. While
contour-based description is very sensitive to imperfections in the contour, histogram-based
descriptions are more sensitive to misplacement of the descriptor due to any suboptimal
hand/forearm segmentation.

All this suggests that it might be bene�cial to use two di�erent descriptors in parallel to
increase the recognition accuracy. We approach this problem by aggregating the results
of a pair of descriptors, which are treated as black boxes in this section. However, di-
rect aggregation of distance metrics (for each pair of the query and database images) is
problematic since each descriptor generates its distances in a di�erent range, which even
might not be linearly scaled. Therefore, we propose to combine the rankings produced
by each descriptor after comparing a query to all database images, which are independent
of the actual scaling of the distances. Formally, the ranking R ∈ Sn is a permutation
of n elements, n is the number of images in the database, where Ri is a natural number
indicating the rank of database image i, the best match having the �rst rank. We present
two possibilities of aggregation of descriptors A and B:
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Average rank is the average of two ranks RA and RB, i.e. (RA + RB)/2.

Post-�ltered rank is �nding the best k matches in RA, indexed as K, and afterwards
comparing the query only to the few database images K using B (the post-�lter) to
produce the �nal ranking. In our experiments, we use k = 5. This method is suitable
in particular for slow and/or precise descriptors to be used as a post-�lter.

The database image ranked as �rst is then the aggregated solution.

We present the results of ranking aggregation in Section 5.5. The most bene�cial com-
bination seems to be the IS Match post-�ltered with the circular region descriptor where
the recognition quality is improved by 4 percent points. Although this is quite little, the
improvement comes computationally nearly for free as the the circular region descriptor
shares the segmentation phase with IS Match and its run time for making 5 comparisons
is negligible. Moreover, as shown in Section 5.6, its creation time is very fast.
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Chapter 5

Experiments

We evaluate the performance of both types of descriptors proposed in Chapter 4 using real
recorded videos as queries against a synthetic database. The database and the evaluation
methodology is introduced in Sections 5.1 and 5.2. Sections 5.3 to 5.5 contain benchmarks
used to support several decisions made during the design of the descriptors. Finally,
Section 5.6 contains the general evaluation on our testing datasets.

5.1 A Database for Hand Shape Retrieval

We use a synthetic hand shape database for nearest-neighbor classi�cation of query images.
An articulated right hand 3D model was kindly provided by A. Heloir [Heloir and Kipp
2010]. The model is of adult proportions and includes a part of the forearm as well. The
forearm is practically ignored in the computation of contour-based descriptors, whereas it
is used for creating distribution-based region descriptors.

We have manually modeled 14 out of the 41 frequently used ASL hand shapes [Tennant
and Brown 2002]. These are A-I and K-O (note that there is no 'J' hand shape), see
Figure 5.1 for frontal renderings. Note that especially the closed-�st hand shapes are
rather similar to each other. The technique of introducing small distortions to the joints'
angles and positions was not used: while it might decrease the sensitivity to variations in
hand shapes, it also makes the database very big.

The hand is located at the origin of the 3D coordinate system and a virtual perspective
camera is used to render each hand shape from di�erent viewpoints. The virtual camera
orbits the hand with a �xed distance to it and is always pointed towards the center. We
de�ne the position of the virtual camera using the spherical coordinates as in Figure 5.2.
The viewpoints are sampled equidistantly in the inclination θ ranging between 0 and 90
degrees and in the azimuth ϕ between 0 and 360 degrees. We use sampling steps of 15 and
30 degrees, depending on the particular experiment. In the following, we use the notation
s(ϕ) and s(θ) to denote the chosen sampling step. With the maximum sampling density,
there are 168 viewpoints per pose, totaling 2352 rendered frames for the whole database.
Generating multiple rotations of the same image is not necessary as all our descriptors are

41
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Figure 5.1 � Rendered images of 14 hand shapes contained in the database. Upper row:
shapes A-G, lower row: shapes H-I, K-O.

θ

φ

Z

A

Figure 5.2 � A spherical coordinate system with zenith direction Z and azimuth axis A. The
hand in the picture is being observed from inclination θ = 45° and azimuth ϕ = 45°.

rotation invariant. Note that the viewpoint is changed and not the hand pose, i.e. the
wrist always stays straight.

We use Blender to render the database. The resolution is the same as of the 3DV camera,
i.e. 320Ö240 pixels. The output is a depth image and a color image with the hand part
in blue, see Figure 4.5 on page 35 for an example. The color image is utilized solely in
Section 4.2.1, the blue color being an overlaid texture of the model. The values in the
depth image are then rescaled so that the synthetic hand measures 18.3 cm, in accord
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Figure 5.3 � Several frames of the letter C from Test dataset 1.

with the average human hand length [Agnihotri et al. 2006]. Finally, the descriptors
are precomputed for each rendered depth image. The content of the database are the
descriptors and not the images themselves.

5.2 Evaluation Methodology

Before we report any evaluation of the descriptors presented in Chapter 4, let us �rst
introduce the general testing procedure, datasets, and metrics.

The input of our system is a depth image query, which is either a frame of a dataset
video or, in interactive mode, comes directly from the camera. The hand is segmented
and its descriptor extracted. This descriptor is then compared to all database descriptors
in a nearest-neighbor fashion1 and a ranking is produced. Optionally, this ranking may
be altered as described in Section 4.3. Finally, the hand shape class of the best match
is chosen as the output. The actual best matching viewpoint, i.e., the orientation of the
hand, is not used in the evaluation. We stress that the classes correspond to hand shapes
and not �ngerspelled letters. Speci�cally, the letters H and U, G and Q, or K and P have
the same hand shape but di�erent hand orientation towards the camera, see Figure 2.1 on
page 7.

Although there are many elaborate sign language datasets captured using conventional
cameras, we are not aware of any dataset created by a ToF camera for this purpose.
Therefore, we had to revert to capture our own videos using the 3DV camera. As the
author is not a trained signer himself, the recordings show a large variance in hand shapes.
All videos capture the same person. All dataset frames are manually annotated by their
ground-truth hand shape class.

We have acquired one training dataset and two testing datasets. The training dataset
was used to design the descriptors and tune their parameters, while the testing datasets
are purely used for assessing the retrieval performance. Note that the classical three-
way splitting is super�uous in our context since we do not utilize any machine learning
techniques. We now describe the datasets in more detail:

Training dataset is a video of a person performing the �ngerspelled letters A-I, K-Q,
and U with his right hand in several di�erent locations around the head and with
azimuth within ±90 degrees and inclination of 45-90 degrees. The hand distance

1We have also experimented with k-nearest neighbors but no consistent increase in recognition perfor-
mance was observed.
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from the body is relatively big not to raise any major segmentation issues. The
actual dataset contains 20 equidistantly sampled frames for each letter.

Test dataset 1 is a dataset semantically similar to the training one, albeit coming from a
di�erent shooting session and with a small distance between the body and the hand.
Figure 5.3 contains 4 frames for illustration. The dataset contains 20 equidistantly
sampled frames for each letter as well.

Test dataset 2 is a video of a person performing �ngerspelled the letters A-I, K-Q, and U
with his right hand near the signer's face and facing the camera, which is a realistic
settings for �ngerspelling. The actual dataset contains 10 equidistantly sampled
frames for each letter.

Typically, we use only the letters A-I and K-O from the datasets for evaluation as they
correspond to distinct hand shape classes. The letters P, Q and U are evaluated in Sec-
tion 5.6.

Our evaluation metric is the retrieval accuracy, measured as the fraction of the correctly
classi�ed queries in the set of all queries from a given dataset.

5.3 Descriptor Localization Evaluation

In this section, we evaluate six methods of localizing a descriptor, as presented in Section
4.1.1. To recapitulate, these are: mean, geometric median, MIP, mean-shift with a standard
deviation-based bandwidth, mean-shift with a 12 cm bandwidth, and median-shift with a
12 cm bandwidth. Additionally, MIP with its input morphologically closed by a circular
structure element of radius of 5 pixels is evaluated.

We argue that the most important asset of a good algorithm for detecting the center point
is its robustness to semantically unimportant changes of the hand shape rather than its
absolute closeness to one speci�c semantic point like, e.g., the palm's center. Therefore,
we investigate the point's stability with respect to several alternations of the silhouette:

Small out-of-plane rotations in azimuth and inclination. Four views with di�erences
of ±3 degrees and four with ±6 degrees were considered. Invariance to these changes
is important as the viewpoints in our database are only sparsely sampled.

Morphological opening and closing by a circular structure element of radius of 1 to
4 pixels. This is mainly to simulate joining and separating of close �ngers as a result
of imperfect segmentation and low resolution of the depth camera.

Changes in the length of a forearm are also very important to be invariant to. We
extend or shorten the forearm by 2 and 4 centimeters during a simulated hand seg-
mentation.

Little movements of �ngers is signi�cant as one cannot expect a signer to hold a cer-
tain hand pose without any shivering going on.
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While the �rst three criteria are evaluated using synthetic images of our hand model (hand
shapes A-O without J; azimuth angles sampled every 30 degrees; inclination �xed to 30,
60, and 90 degrees), we use a tailored real video for testing the fourth criterion. In the
video, the signer performs C and F �ngerspelling signs with a stable hand and just very
slight movements of the �ngers.

The results can be seen in Figure 5.4. We are interested in the �uctuations of estimated
center points in the modi�ed images with respect to the reference image. For the �rst three
criteria, each �gure shows the average distance to the position in the reference image. The
statistics are aggregated over all poses and viewpoints. As far as the fourth criterion is
considered, the distances are shown with respect to the mean position over the whole video
and the statistics are per-frame.

Morphological closing reveals increased sensitivity of MIP to this operation while other
interest points are nearly not a�ected. This is due to the fact that the distance transform
is very sensitive to any cracks in the silhouette. We can see that this might be improved
by closing the shape beforehand, as MIP with closing performs very well. However, this
apparently helps only on the synthetic dataset as both versions of MIP perform very
poorly in the real video, especially in the case of the letter C (Figure 5.4e). Note that
morphological opening does not exhibit any di�erences, which is mainly due to the fact
that the contours are rendered perfectly and the structuring element radius is small enough
not to separate any touching �ngers.

Out-of-plane rotations appear to be problematic for MIP and slightly for the mean-shift
based on standard deviation, which has to do with the changing contours of the projections.
On the other hand, the MIP excels in di�erent forearm lengths, while the mean and median
perform the worst.

We can conclude that if the length of the segmented hand was stable, the mean would
be the best choice due to its quality and speed. However, as this might not be the case
in our settings, we sacri�ce some computational time to compute the median-shift with a
12 cm bandwidth. The algorithm takes about 10ms on an input depth image of a hand
subsampled by a factor of 1.5.

5.4 Cell Con�guration and Representation Evaluation

In Section 4.1.2 two layouts of cell con�gurations of a descriptor were presented: the
circular and the grid one. The circular descriptor has two parameters that can be used
to vary the complexity of the descriptor: the number of sectors within a ring (angular
resolution) and the number of rings (radial resolution). The square grid descriptor has
only one parameter, the number of cells. As the complexity of the descriptor grows, it will
be able to discriminate better, but it will also be more sensitive to shape distortions. In
addition to that, four cell representations were proposed: point count (PC), mean depth
di�erence (MDD), depth histogram (DH) and mean gradient magnitude (MGM).

We evaluate the retrieval accuracy of the system using each cell representation in a number
of con�gurations. In the benchmark, the letters A-I and K-O from the training dataset are
matched to the equivalent range of hand shapes in the database (azimuth angles sampled
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(a) Morphological closing.
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(b) Morphological opening.
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(c) Out-of-plane rotations.
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(d) Changes in the length of a forearm.
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(e) Little movements of �ngers, the letter C.
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(f) Little movements of �ngers, the letter F.

Figure 5.4 � Evaluation of the robustness of di�erent localizations of descriptors.
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(a) Point count representation
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(b) Mean depth di�erence
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(c) Depth histogram
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(d) Mean gradient magnitude

Figure 5.5 � Circular design. The baseline is de�ned as random classi�cation.

every 30 degrees; inclination �xed to 60 and 90 degrees).

The results can be seen in Figures 5.5 and 5.6 and are rather discouraging. Generally, it
can be said that using silhouettes is distinctly better than using any depth information
alone and that grid con�guration does not have an edge over circular one in any test. While
the PC representation scores around 40% of accuracy, the depth representations are in the
area of 20%. The MGM is the worst representation, likely due to its high noisiness. The
DH appear not to be worth the �vefold increase in descriptor size as their performance is
only marginally better. In the following, we pick a con�guration which performs well both
in PC and MDD.

First, let us analyze the performance of circular descriptors. There does not seem to be
any distinct peak which would indicate a sweat spot between the discriminative power
and sensitivity since the curves become relatively �at after the initial growth in angular
resolution. Con�gurations with 2 or 3 rings seem to perform worse than those with 4
or 5. However, there is an indication that 5 rings might be already too much as this
con�guration is not the best as far as PC and MDD are considered. Although there is
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(a) Point count representation
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(b) Mean depth di�erence
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(c) Depth histogram

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of cells

A
cc

ur
ac

y

 

 

42 62 82 102 122 142 162

Descriptor
Baseline

(d) Mean gradient magnitude

Figure 5.6 � Grid design. The baseline is de�ned as random classi�cation.

no apparently optimal con�guration, we choose a descriptor of size 4Ö28 = 112 cells.
Interestingly enough, the performance is very similar to the 2Ö28 cell version. However,
we believe that its quality in MDD is an outlier by judging the whole curve.

Grid design peaks performance-wise at 64 cells when using PC representation while it
stays �at in the other ones. We can conclude that 64 cells is thus the optimal size. Its
performance is worse than in the case of the optimal circular one, though.

5.4.1 Joint Representation

We carry out an experiment to determine whether the two best performing representations,
namely the point count (PC) and the mean depth di�erence (MDD), of the 4Ö28 circular
descriptor could be combined to gain retrieval accuracy. We evaluate the aggregation of
distance metrics dPC and dMDD using the following functions di with a free parameter k:
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Figure 5.7 � Aggregating distance metrics of the PC and the MDD descriptor representations.
The baseline is de�ned as the accuracy of the PC representation alone.

d1 : ||((1− k)dPC , kdMDD)|| (5.1)

d2 : (1− k)dPC + kdMDD (5.2)

d3 : min((1− k)dPC , kdMDD) (5.3)

d4 : max((1− k)dPC , kdMDD) (5.4)

The results are plotted in Figure 5.7 for a certain range of the parameter k. One can see
that it is possible to get a marginal improvement this way, the best performance being
reached by the weighted L2 norm d1 with k = 0.1.

5.5 Ranking Aggregation Evaluation

In this section, we explore whether results of di�erent descriptors introduced in Chapter 4
can be aggregated to increase the overall retrieval accuracy, as motivated in Section 4.3. We
experiment with 6 variants listed in Section 5.6, using therein introduced abbreviations for
clarity. In the benchmark, the letters A-I and K-O from the training dataset are matched
to the equivalent range of hand shapes in the database (azimuth angles sampled every 30
degrees; inclination �xed to 60 and 90 degrees).

The results are shown in Table 5.1. Blue values mark combinations which pay o� in terms
of accuracy. Unfortunately, the data suggest that no distinct improvement can be made.
For average rank, combing 2D and 3D versions of the same descriptor seems bene�cial,
although the highest improvement is only of 3 percentage points. In the case of post-
�ltered rank, the best improvement of 4 percentage points is attained when post-�ltering
ISMatch/ISMatch2D with CHist. Additionally, some combinations of 2D and 3D versions
of the same descriptor yield a marginal increase as well.
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CHist CHist2D ISMatch ISMatch2D Procr Procr2D

CHist 48% 50% 61% 58% 59% 58%

CHist2D 46% 57% 55% 58% 52%

ISMatch 63% 65% 65% 63%

ISMatch2D 62% 68% 64%

Procr 66% 69%

Procr2D 64%

(a) Average rank. The matrix is symmetric.

CHist CHist2D ISMatch ISMatch2D Procr Procr2D

CHist 48% 51% 58% 53% 55% 53%

CHist2D 47% 46% 54% 51% 54% 52%

ISMatch 67% 63% 63% 63% 66% 62%

ISMatch2D 66% 60% 64% 62% 66% 64%

Procr 64% 63% 65% 67% 66% 68%

Procr2D 61% 58% 63% 61% 65% 64%

(b) Post-�ltered rank. Rows are original descriptors, columns are post-�lters.

Table 5.1 � A comparison of retrieval accuracy of descriptors aggregated using average rank
and post-�ltered rank. The diagonal (in bold) shows the performance of each method alone,
whereas o�-diagonal quantities represent aggregations. Blue values indicate the given aggre-
gation to outperform any of the two methods it combines.

5.6 Evaluation on Test Datasets

Here, we utilize both test datasets to benchmark the following 7 descriptors introduced
throughout Chapter 4:

CHist The histogram-based region descriptor with circular con�guration of size 4Ö28
cells. The representation is of joint point count and mean depth di�erence.

CHist2D The same descriptor but without mean depth di�erence. Hence, no depth
information is used.

ISMatch The contour-based descriptor using IS-match algorithm for alignment of 3D
contours.

ISMatch2D The same descriptor but with constant Z coordinates of the contour points.
This represents the original version of [Riemenschneider et al. 2010].

Procr The contour-based descriptor using the Procrustes analysis for alignment of 3D
contours.

Procr2D The same descriptor but with constant Z coordinates of the contour points.

Aggr The ISMatch descriptor post-�ltered with CHist.
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(a) Full range (θ ∈ [0; 90], ϕ ∈ [0; 360])
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(b) Frontal range (θ ∈ [30; 90], ϕ ∈ [−60; 60])

Figure 5.8 � The retrieval accuracy measured on Test dataset 1, the letters A-I, K-O. The
plots relate accuracy to di�erent sampling densities of the database, with the function s indi-
cating the sampling step. The horizontal dash line shows the baseline of random classi�cation.

We use two di�erent subsets of the database: a full range of camera angles (inclination
θ ∈ [0; 90] and azimuth ϕ ∈ [0; 360]) and a frontal range of angles (inclination θ ∈ [30; 90]
and azimuth ϕ ∈ [−60; 60]), where the palm more or less faces the camera. As the frontal
range is su�cient2 to recognize �ngerspelling, we expect Test dataset 2 to perform similarly
on both subsets. On the contrary, Test dataset 1 also contains some frames of azimuth
larger than 60◦ and a marginal drop in performance is thus anticipated. Unfortunately,
no dataset was acquired to test the recognition in orientations with the palm facing the
signer, i.e. azimuths ϕ ∈ [90; 270]. This is a part of the future work.

Four di�erent viewpoint sampling densities are tried out in each subset, with the steps of
15◦ or 30◦ for both angles independently. Most of the testing is done using the �ngerspelling
letters A-I and K-O. In the last part, we also investigate the recognition of the 'tilted' letters
P, Q, and U.

5.6.1 Retrieval Accuracy

The results are plotted in Figures 5.8 and 5.9. Generally, the best cases score about 60%
in accuracy. The Procrustes descriptor performs the best in nearly every test, followed by
the circular histogram-based descriptor. Retrieval performance on Test dataset 1 is worse
than on Dataset 2.

What is striking is that the sampling density seems to have nearly no in�uence on the
accuracy and it cannot be concluded that higher resolution helps. Despite this, the surge
in the number of DB images has an e�ect on the matching. We have studied the changes
in the best matching DB image for each frame of Test dataset 1 and 2 under the full range
of angles when changing the step from 30◦ to 15◦. While most of the query frames do not

2To be correct, the letter H is �ngerspelled with ϕ = 180◦ but we neglect the fact here and hope that
its distinctive shape will save the recognition. The letter G should be recognizable within the constraints.
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Figure 5.9 � The retrieval accuracy measured on Test dataset 2, the letters A-I, K-O. The
plots relate accuracy to di�erent sampling densities of the database, with the function s indi-
cating the sampling step. The horizontal dash line shows the baseline of random classi�cation.

change their classi�cation correctness either way (about 91%), roughly 23% change their
assigned label. About 50% of frames change their best matching viewpoint (approximately
25% in more than 15◦). The percentages for the frontal range of angles are slightly lower.

Another aspect is the contribution of depth information. By evaluating each descriptor
both with and without depth information, we can conclude that, unfortunately, no variant
utilizing the depth performs consistently better than its plain 2D version. Speci�cally,
CHist works better than CHist2D only on the frontal subset, ISMatch is better than
ISMatch2D only in Test 2 (distinctly, however) and Procr is marginally worse than Procr2D
in every test. This of course neglects the fact that the depth information is used also by
the 2D variants in selecting the correct radius (histogram-based descriptors) or the contour
sampling step (contour-based descriptors).

Comparing the performance on full and frontal subsets, we see a small decrease of perfor-
mance in Test 1, whereas the results in Test 2 depend on the particular descriptor.

The Aggr descriptor is better than its both parts only in Test1. For Test 2, the aggregated
descriptor is not worthwhile as CHist performs equivalently or better.

Let us now present the performance of chosen descriptors in more detail. We utilize
confusion matrices, where each column represents the instances of the predicted classes
and each row of the ground truth classes. In Figure 5.10, confusion matrices of the CHist,
ISMatch and Procr descriptors are presented for the full range DB subset in Test 1 and for
the frontal range in Test 2, both with 30◦ sampling. Generally, hand shapes A, E, M, N,
and O are all being confused among each other, with slight dominance of one or another
depending on the particular case. This suggests that the image quality and resolution of
the 3DV camera might not be su�cient to distinguish the shapes. Shape C is nearly always
misclassi�ed as E. Interesting is the case of classifying H as B in Figure 5.10a, which is due
to the fact that the letter H looks similar to a B-shaped hand from azimuth of 90 degrees,
see Figure 5.1 for renderings of the hand shapes.
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(a) Test dataset 1, full range (θ ∈ [0; 90], ϕ ∈ [0; 360])
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(b) Test dataset 2, frontal range (θ ∈ [30; 90], ϕ ∈ [−60; 60])

Figure 5.10 � Confusion matrices of CHist (left), ISMatch and Procr (right) descriptors.

5.6.2 Run time Performance

The implementation was done in Matlab 7.4. Sole exception is the preprocessing stage
of Procr/Procr2D, which is implemented as a C wrapper. Figure 5.11 shows the average
run time in seconds for the whole retrieval pipeline measured by Matlab's tic-toc on an
Intel Core2Duo P8400 laptop with 2GB RAM. The time required for the creation of a
descriptor, including the segmentation, is �xed (roughly 170ms for CHist and 250ms for
the remaining), whereas the time used for nearest neighbor searching linearly depends on
the number of DB elements.

As the bene�t of using either the full range subset or dense sampling is not evident, we
consider the frontal range angles with the sampling step of 30 degrees, which totals to 36
database images per hand shape. Under this settings, the system is able to run at 5.3 fps
with CHist, at 2 fps with Procr, and at 1.7 fps with the ISMatch descriptor. This makes
the system interactive. We believe that with a C implementation of both the CHist and
the segmentation the system would be able to run in real time.

5.6.3 The Letters P, Q, and U

In all previous evaluations, the letters P, Q, and U were never considered in order to prevent
confusion since they classify under the same hand shape as K, G, and H, respectively. Here,
we evaluate the accuracy on these three letters exclusively against the whole database of
14 hand shapes. Note that we are using the full range of angles to be able to recognize
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Figure 5.11 � The run time per frame, measured on Test dataset 1, the letters A-I, K-O.
The plots relate run time to di�erent sampling densities of the database, with the function
s indicating the sampling step. The green bars indicate the time spent on segmentation and
descriptor computation.

the hand in its minimal inclination. The hand shapes in the database stay the same. The
results are plotted in Figures 5.12c and 5.12d in comparison to the evaluation of the 'base'
letters G, H, and K. While the results are similar in Test 1, there are some big drops in
accuracy in the second dataset. Nevertheless, we conclude that the letters P, Q, and U can
be retrieved reasonably well.

5.6.4 Analysis of the Recognition Performance

Let us analyze the discovered inconclusive bene�t of dense database sampling �rst. We
argue that this might be partially due to the mostly wrong detection of orientations of the
hand. Note that this is possible, since we de�ne the accuracy in terms of hand shape classes
rather than in terms of the hand orientation or combination of both (see Section 5.2). Let
us assume that the matching process classi�es query images independently of their actual
hand orientation. Then making the sampling of orientations more dense equivalently for
all classes leads to no change in results. We test this conjecture as follows. We make an
experiment to see what is the quality of the assigned hand orientations. Using the full
range of camera angles, we examined the correct best matches and computed the fraction
of frontal angles among them. This should be near 100% for Test dataset 2 and slightly
less for Test 1. As Figure 5.13 shows, the percentage is lower but still far above the baseline
of randomness, which suggests that the hypothesis is neither completely wrong nor correct.

The recognition accuracy peaks at 64.3%, respectively 55.7% for the two test datasets
and thus is far from being excellent. We can see at least two problems which make the
recognition perform this way.

First, the closed hand shapes A, E, M, N, O are very hard to distinguish, especially from
their frontal views. Their contour is quite similar and the interior of the hand has a very
low signal-to-noise ratio when acquired using the ToF camera. Even by directly looking
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(b) Test dataset 2 (letters G,H,K).
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(c) Test dataset 1 (letters P,Q,U).
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(d) Test dataset 2 (letters P,Q,U).

Figure 5.12 � The retrieval accuracy using the full range of angles, i.e. inclination θ ∈ [0; 90]
and azimuth ϕ ∈ [0; 360], and a subset of the �ngerspelling letters. The plots relate accuracy
to di�erent sampling densities of the database, with the function s indicating the sampling
step. The horizontal dash line shows the baseline of random classi�cation.

at the depth image with bare eyes, it is often very challenging to guess the position of the
�ngers in the palm from a single frame.

To verify this assertion, we acquired �ve videos of a real hand forming the mentioned hand
shapes. Each video had 40 frames. The hand was �xed on a box and did not move during
or between the acquisitions. For each video k, an averaged depth image Īk was computed
to represent the clean signal. Afterwards, we extracted the hand interior region common to
all �ve poses using a manually created mask, see Figure 5.14. Each region was normalized
to have zero mean depth. Then, for each video k, we considered all 200 frames I as noisy
versions of the signal Īk and computed their signal-to-noise ratio (SNR):

SNR = 10 log10(

∑
mask Īk(x, y)2∑

mask(Īk(x, y)− I(x, y))2
) (5.5)



56 CHAPTER 5. EXPERIMENTS

CHist CHist2D ISMatch ISMatch2D Procr Procr2D Aggr
0

10

20

30

40

50

60

70

80

90

100

C
or

re
ct

 fr
on

ta
l m

at
ch

es
  [

%
]

 

 

s(θ)=30 s(φ)=30
s(θ)=15 s(φ)=30
s(θ)=30 s(φ)=15
s(θ)=15 s(φ)=15

(a) Test dataset 1 (letters A-I, K-O)
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(b) Test dataset 2 (letters A-I, K-O)

Figure 5.13 � The fraction of the correct matches being frontal views (θ ∈ [30; 90], ϕ ∈
[−60; 60]) in a full range evaluation. The plots relate accuracy to di�erent sampling densities
of the database, with the function s indicating the sampling step. The horizontal dash line
shows the baseline of random view assignment.
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Figure 5.14 � Averaged depth images ĪE and ĪM with the highlighted region common to all
�ve poses.

The results are shown in Table 5.2. The diagonal has the highest SNR in each row, which
indicates that the hand shapes can be in theory distinguished. However, except for the
shape O, all SNRs are negative. This implies that the considered part of the interior of
the hand is too �at to stand out of the noise.

The second problem is that intra-class variabilities seem to be comparable or higher than
inter-class di�erences. The are two factors contributing to this, besides the particular de-
sign of the descriptor, of course. First, the viewpoint invariance which results in generating
many di�erent images for one class. Second, the quality of the acquired test sets is low due
to the signer's tendency to form the same gesture each time in slightly di�erent shapes.

We base this belief on the fact that the good and bad matches are very often not distinctly
separated in terms of the distance metric and thus it is very easy for bad matches to
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[dB] A E M N O

ĪA -5.25 -6.66 -6.97 -6.10 -8.59

ĪE -4.56 -3.10 -5.12 -4.25 -6.00

ĪM -3.97 -4.23 -2.72 -3.72 -6.54

ĪN -5.22 -5.47 -5.86 -4.39 -7.09

ĪO -1.98 -1.49 -2.85 -1.35 1.39

Table 5.2 � Signal-to-noise ratios split up by the hand shape. Rows represent �ve signals
introduced in the text. Values in each column are mean SNRs aggregated over 40 frames of
the corresponding video.
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(a) Test dataset 1 evaluated on the full range
database with s(θ) = s(ϕ) = 15◦.
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(b) The frontal range database evaluated on
the full range database, both with s(θ) =
s(ϕ) = 15◦. Trivial zero-distance matches are
discarded.

Figure 5.15 � The histograms of the distances to the nearest correct and incorrect database
image for the CHist descriptor.

become the nearest neighbors. We illustrate the behavior on the example of the CHist
descriptor, see Figure 5.15. For each query image, the distances to the nearest correct and
incorrect database image were found and plotted as a histogram. In Figure 5.15a one can
see that the modes of both distributions are relatively equal. An interesting comparison
is made in Figure 5.15b where the query was chosen to be synthetic and the bad matches
are typically more distant. This suggests that the intra-class variabilities are considerably
higher in real-world datasets, both due to camera noise and variabilities in imitating the
'canonical' database hand shapes by the signer.
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Chapter 6

Conclusion

We have presented a hand shape recognition system processing depth images from a
ToF camera, addressing all steps of the pipeline. The input is classi�ed into one of 14
classes based on a single image of the hand, observed from an arbitrary viewpoint, using
appearance-based matching with a database of synthetic views. We have proposed and
evaluated three types of descriptors. The evaluation is done on a set of videos of a single
person performing �ngerspelling in a given range of viewpoints. The system is able to run
interactively and its recognition accuracy peaks at about 60% for the two test datasets.

Di�erent types of features and their representations were investigated, each having its assets
and drawbacks. For instance, the computation of the central point, radius and orientation
is required for region descriptors. On the other hand, region descriptors can be fast and
easily compared, whereas the presented contour-based methods require computationally
intensive alignment. While contour-based description is very sensitive to imperfections
in the contour, histogram-based descriptions are more sensitive to misplacement of the
descriptor. The best recognition results were achieved by a contour-based descriptor where
Procrustes analysis is used to search for database templates in a given query contour.
Aggregating the ranking of contour- and histogram-based descriptors was shown not to
guarantee a stable accuracy improvement.

The retrieval performance is far from being excellent, though. We believe this is partly due
to the signer's tendency to form the same gesture each time in slightly di�erent shapes.
Additionally, we have shown that several closed hand shapes, di�ering only by the position
of the thumb, are very hard to distinguish using our ToF camera. Also, note that the
actual spatial resolution of the hand is rather small: as it is allowed to move freely through
the signing space, it covers typically only about 15% of the area of the depth images.

On the other hand, our novel segmentation algorithm produces good results both on the
test datasets and in the interactive mode of the system. The system can deal with realistic
poses where the hand is quite close to the body. We believe that the idea of using the
lateral projection (possibly jointly with the ground projection) for segmentation of 2.5D
data might be applicable to other context. Moreover, a C implementation should be able
achieve very low run times.

Several insights and observations were brought up during the design as well as during the
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evaluation. The biggest is the fact that no consistent improvement was made by using
depth information as a discriminative factor in the way presented. This suggests that the
chosen depth representation might not be appropriate for this task or ToF depth data in
general. However, note that similar behavior is reported by [Kollorz et al. 2008] where
integrating depth features raised their reported accuracy by only 1.47 percentage points.

Last, we hope that our evaluation of descriptor localization might be useful for future
research.

Future Work

There are multiple ways of extending this thesis. First, it would be very helpful to acquire
an annotated database of depth videos of experienced signers and make it publicly available.
This would make our experiments more conclusive and would give birth to a standardized
benchmark, which is currently not available to our best knowledge.

Second, the recognition could be made signer-independent. One of the easiest ways is
to introduce a bootstrapping hand con�guration, based on measuring which the proper
scaling coe�cients between the real hand and the database would be estimated.

Third, investigating a joint recognition of hand orientation and hand shape might be
bene�cial. It could both prune the search and increase the retrieval accuracy. In the
current system, retrieving orientation is rather inexact.

Fourth, the bene�t of fusing depth data with additional color information would be helpful
to explore, especially for the descriptors.

Furthermore, di�erent depth cameras should be tried out in this context. Especially exper-
iments with Microsoft Kinect could be promising. However, our descriptors are probably
not directly transferable to this data due to the di�erent noise model and image acquisition
artifacts.

Additionally, one might concentrate their e�ort on removing the need to test against all
database images for every query. This might be done by pruning the search or using
techniques such as hashing.

Finally, utilizing machine learning and dimensionality reduction techniques should be in-
vestigated. Again, this would bene�t from having a large dataset beforehand.
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