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Abstract

This thesis investigates into a new method for creating 3D models from real world objects.
First an introduction into various methods to capture 3D data is presented. The focus of
this work are Time-of-Flight (ToF) sensors to capture 3D data. Therefore the principle of
operation is described along with the theoretical concepts and related work with these cam-
eras. The major obstacle towards 3D scanning with ToF cameras is the recording solution.
This thesis tries to solve this issue by applying the concept of multi-frame superresolution
towards depth data. For completeness other approaches to increase the resolution of ToF
sensors from literature are also reviewed.

The superresolution principle is to capture multiple scans from the same (static) scene
while slightly translating the camera in-between shots. Therefore more information about
the scene is gathered, that can be used to compute a higher resolution scan. Two algo-
rithms for superresolution with ToF systems have been developed within this thesis: the
first applies image-based superresolution towards depth data. Here we could verify the
enhancement of resolution, along with a reduction in noise. The second algorithm, Lidar-
Boost, has been developed entirely towards depth data. This resulted in yet another quality
improvement, which we show both quantitatively and qualitatively. For both algorithms we
show results from synthetic and real data sets. The thesis concludes with an outlook on
how LidarBoost can be used to capture 3D models with Time-of-Flight cameras.
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1 Introduction

For a long time, humans were interested in 3D information, being it architects that wanted
to characterize a building exactly or scientists what wanted the most accurate represen-
tation of an object. Before computers were known they were limited to taking photos
(perspective re-productions of the 3D world) or could take only sparse measurements.

Also in the world of movies the third dimension has been of great interest. While 3D
cinema has been around for nearly hundred years (with different levels of technical sophis-
tication) the dawn of rendered 3D movies such as Toy Story dramatically increased the
need of accurate 3D representations of real-world objects. Such models are the funda-
mentals for realistic movies that are created artificially within the computer.

This thesis reviews a number of techniques which can be used to capture 3D data and
3D models specifically. As the majority of these are rather expensive and/or complex to
operate we then focus on a relatively novel and soon-to-be-cheap device, a 3D Time-Of-
Flight (ToF) camera. These devices are the size of a traditional webcam, but record 3D
information instead of color images. Unfortunately the accuracy with which these cameras
can represent the scene in front of them is rather low. The main contribution of this the-
sis is to introduce a method that significantly improves the data quality of ToF cameras.
We demonstrate for the first time that the super-resolution principale (super-sampling the
scene) can be used for depth data and develop a novel algorithm based on this to boost
resolution. Finally using the presented method we can create models of sufficient quality
for 3D movies. The presented framework is both easy to operate and financially economic.

Apart from the movie industry many other fields will profit from low priced and accurate
3D sensing. Recently novel game interfaces have been demonstrated that use 3D data as
input to control a game. The potential in new games that could be developed with such
interfaces are peaked on with the Nintendo Wii. Here the user has to hold a controller in
his hand, that records the 3D movement of itself while being moved. Even though this 3D
information is very unreliable a whole new classes of games have been developed. The
hope is that if full-body motion is tracked instead of sparse movements even more exciting
games can be designed. Examples include a full-body tracking for dancing games [4].

Another area that benefits strongly from high quality 3D data is robotics. In order to
navigate an environment a system needs information about its surroundings and its current
position. Previous techniques to gather this information could either deliver only sparse
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1 Introduction

information (such as laser scanners that only record a plane) or were prone to errors (i.e.
stereo methods that face problems in environments with little texture). Here Time-of-Flight
cameras can provide substantial better data to the robotic systems and thus help to create
smarter machines.

This work is structured as follows: in Chapter 2 the basic principles of Time-of-Flight
sensors are described along with respective error sources. Furthermore related work on
improving ToF sensors as well as image sensors is given in Chapter 3. We investigate the
use of algorithms designed to improve resolution for color images and their application to
3D data in Chapter 4. Also we describe the setup used to record the scenes. The novel
algorithm specifically designed for 3D data and that improves their resolution and accuracy
is presented in Chapter 5. We conclude with a discussion and possible directions of future
work in Chapter 6.

The research described in this thesis lead to the following publications

• High-quality Scanning using Time-Of-Flight Depth Superresolution by Schuon, Se-
bastian and Theobalt, Christian and Davis, James and Thrun, Sebastian at CVPR
Workshop on Time-of-Flight Computer Vision 2008 [43]

• LidarBoost: Depth Superresolution for ToF 3D Shape Scanning by Schuon, Sebas-
tian and Theobalt, Christian and Davis, James and Thrun, Sebastian at CVPR 2009
[44]

• 3D Shape Scanning with a Time-of-Flight Camera by Cui, Yan and Schuon, Sebas-
tian and Chan, Derek and Thrun, Sebastian and Theobalt, Christian at CVPR 2010.
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2 Background

To acquire 3D data, there are a plentiful of technologies around: from stereo-imaging
technologies to structure-from-motion to laser scanning (see [28] for an overview).

Stereo imaging has been around for a long time. A good introduction is given in [13] and
[41] provides a benchmark of state-of-the-art algorithms. In 3D-from-stereo two or more
cameras record the same scene. The relation to each other, i.e. a mathematical model that
transforms one of their viewpoints into the other needs to be known (this is achieved during
camera calibration). Then corresponding points are found in their images, a displacement
of those is computed and by triangulation the depth can be computed. This method faces
challenges, if the objects in the scene have no or little texture, hence corresponding points
cannot be computed. In principle this technique can produce high resolution depth data
(when using cameras with a high resolution), but in practice this is hard to achieve due to
hard correspondence problems and noise. Furthermore these devices need quite a large
housing, due to the displacement of the two cameras. Up until recently, the computation
of a 3D scene required a significant amount of time, but now is available in real time. For a
well known manufacturer of such devices we want to point out PointGrey [16].

Another important technique that is based of images is structure-from-motion. Here 3D
information is obtained by comparing images that have been shot at different times. First
the motion of the object in question is computed. Then features on the surface of the
object are identified and their displacement computed. By the amount of displacement of
the features the distance to the camera can be computed (remember, the closer an object
is the further it appears to be displaced in to subsequent images). While this technique
requires only one camera, the camera or the object has to be moved to infer computed 3D
information. Furthermore the scene has to be static and it shares the problem of finding
suitable features with stereo approaches. For both methods there have been approaches
to overcome this issue, such as projecting structured light on to the scene to create good
features.

Laser scanning uses a laser beam that is reflected on the object’s surface. By measuring
the time it travels the distance can be computed (a concept we will go into detail later on).
Using precise techniques to measure time high resolution depth data can be captured at
low computational costs. The disadvantage of this principle is that the laser beam needs to
be moved through the scene to capture it. This is normally done using stepper motors and
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2 Background

a rotating beam. Overall a laser scanning system has a number of mechanical parts (that
are more likely to fail) as well as limited temporal resolution. In [29] a good introduction to
laser scanners is given.

Here we want to focus on a recent technology that overcomes most of the disadvantages
of its successors mentioned before: Time-Of-Flight (ToF) cameras. The following chapter
presents the theory of operation. We will explain in detail its own limitations and address
how to overcome the most important one, the limit in spatial resolution. Here we introduce
methods that use additional data such as color images and lay out the basics for our very
own contribution, resolution enhancement based on superresolution.

2.1 3D Time-of-Flight Cameras

The idea of a Time-Of-Flight (ToF) camera has first been described in [27]. Here the idea
of a laser scanner has been taken to the next level, where a light beam travels from the
camera to the scene, is reflected and then returns to the camera. The time is taken and
used to compute the distance. By illuminating the whole scene and capturing using a
modified CMOS / CCD camera the whole scene can be sampled at a time. Furthermore
the device can be integrated into a small housing and possibly be manufactured at quite
low cost. This is a clear improvement over techniques such as stereo or laser scanning,
but also introduces its own problems, which we address later in this chapter. Before that
we introduce two different principles of operations and elaborate on the measuring space
of the camera.

2.1.1 Principles of Operation

The principle of Time-of-Flight cameras, is to measure the duration δ t it takes light (prefer-
ably at wavelengths not visible for the human observer, here mostly infrared) to travel from
the camera to the scene, bounce back at the surface of an object and return to the cam-
era. Given the speed of light c, one can easily determine the surface’s distance d form the
camera

d =
1

c ·δ t
(2.1)

All rays originate at the center of projection of the camera. Hence the distance is mea-
sured along the ray of light. This has the at first glance somewhat unusual consequence
that we measure in a rayspace. Hence planar objects in the scene have different distance
values on their surface. This seems reasonable, but in a common representation of depth
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2.1 3D Time-of-Flight Cameras

(a) Depth Map (b) Rendered 3D geometry

Figure 2.1: Depthmap (contrast enhanced) and 3D geometry
Recording of a flat wall using a SR-3000 and averaged over 100 frames

data, this often irritates the viewer. Depth maps are a form of visualization of 3D data,
where the x and y coordinates resemble the pixel coordinate and depth is represented
in the form of brightness at the pixel. In Figure 2.1a we have shown such a depth map
with darker pixels representing further away points. The scene is a flat wall with a knob
in the middle as it can be seen in the rendered geometry (Figure 2.1b). Intuitively one
would imagine the depth map all to be the same color since it is contains a flat object. But
since the camera records in rayspace the points on the surface of the wall are at different
distances to the camera.

Refer to Figure 2.2 where we tried to depict the situation: Intuitively objects A and B
are at the same depth along with all other objects on line e1. This is true if depth would
resemble to the z-coordinate in a global coordinate system, hence a orthographic projec-
tion. But the camera still resembles to the pinhole camera model, where a perspective
projection takes place and all rays converge in the center of projection. Therefore objects
B and C are at the same distance (to the camera). Hence they have the same brightness
in the depth map and so have all other points on the circle e2. Because of this effect it is
best to consider the rendered geometry to judge a scene, since its representation is more
intuitive to the human observer. This advice holds also true for situations, where subtle
details are not visible in the depth map due to slight brightness variations but are clearly in
the rendering. This is due to the effect that small changes in grey value are hard to spot for
the human eye and the rendering can be much better inspected (i.e. the viewer’s position
changed).
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2 Background

A B
C e1

e2

Figure 2.2: Rayspace - equidistant objects are on a circle

For reconstructing metric 3D data, one has to unproject ray space measurements ac-
cording to:

(X ,Y,Z) = D ·V̄ . (2.2)

Here, V = (x,y, f )√
(x2+y2+ f 2)

is the measurement ray direction (viewing vector) from the cam-

era’s center of projection through the sensor pixel at location (x,y) relative to the sensor
center, and f is the camera’s focal length. For metric reconstruction, x and y have to be
specified in terms of metric pixel size µ , i.e. x = ix · µ with ix being the pixel index in x-
direction relative to the pixel center. Further on, D = Pd + Pw

255−g
255 is the depth along the

measurement ray which is computed from the distance to the frontal clipping plane Pd , the
depth of the 3D view frustum Pw, and the gray value g in the depth image supposing it is
quantized to eight bit. For some cameras the frontal clipping plane starts at Pd = 0, which
depends on the very implementation of the camera. Since the quantization limits the sys-
tem’s resolution, it is not recommended to store measurements in depth maps but to use
some sort of raw format most vendors offer.

Considering again the measurement principle for normal operating conditions, the time
in flight can be as short as some ten femto seconds. Therefore innovative ways to measure
the duration are needed. So far researchers have attempted two different approaches
which both found their ways into shipped products. The first is based on a very fast shutter,
the second being the more common one using phase correlation. We explain both in the
following sections.
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2.1 3D Time-of-Flight Cameras

2.1.2 Shutter Based Operation

The Z-cam [14, 50, 12] by 3DV is the only ToF camera known to operate on a shutter based
principle. The camera emits a light wall that is reflected by the scene. From the shape of
the light wall the depth can be reconstructed. The light wall is a squared light pulse [50] at
a wavelength of λ = 800nm [14] 1. The operation principle is outlined in Figure 2.3. Here
the upper pulse is traveling from the camera to the scene and the lower two are returning
pulses. The latter two pulses originate from the same objects.

Δt1 Δt2

Figure 2.3: Shutter Based Time-of-Flight Measurements

Now the camera has a very fast shutter in front of the sensor. Two measurements
are performed one with the shutter closing at δ t1 and one with the shutter closing after the
whole pulse has been received (δ t2). From the first measurement depth can be inferred up
to reflectivity of the objects scanned. This is because if the object is closer to the camera,
the pulse travels shorter and more light is received while the shutter is still open. Hence the
amount if light is indirect proportional to the distance of the object. This technique is called
early close while in theory the sensor could also operate on late open then the amount
of light would be directly proportional to depth. The second measurement is performed to
identify the objects reflectivity by measuring the total amount of reflected light. Then the
distance d is calculated via

d =
Iearly close

Itotal
. (2.3)

With the Z-Cam the light source is a ring of LEDs around the camera that illuminate the
scene (clearly visible in Figure 2.4). The Z-cam can measure full frame depth at video
rate and at a resolution of 320× 240 pixels. Since the sensor is simply a normal camera
chip the depth resolution is limited by the dynamic range of the sensor. The Z-Cam allows

1In their original paper they specify "800 micron" but claim the light to be infrared. Hence we believe this is a
typo and should read nanometers
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2 Background

to open the shutter late and close it early. Thus it can limit its input range to a certain
frustum which is then quantized by the dynamic range (here eight bit). Hence in theory
it could capture at a very high z-resolution but shutter speed and noise severely limit this
capability. Obviously the light source needs to increase power once the shutter intervals
become shorter to keep noise low. A rendered scene captured by a Z-Cam can be seen
in Figure 2.5.

In contrast to competing ToF cameras, the Z-cam features a normal video camera of
640×480 pixels in the same device which enables recording of texture-mapped geometry
(see Figure 2.5a for an example). Unfortunately, video and depth are not recorded through
the same optics and the homographic registration data provided by the manufacturer is
off by several pixels. For comparison experiments we therefore resort to our own external
color camera (Chapter 3.2).

Although the Z-cam delivers scene geometry at unprecedented speed and largely inde-
pendently of scene texture, the quality of recovered 3D data in a single frame is not suffi-
cient for high-quality 3D scanning, as shown in Figure 2.5b compared with data acquired
by a laser scan (Figure 2.5c). The laser scanner used has been relative simple one, that
still introduces more noise than most state-of-the-art laser scanners. Even though aver-
aging helps to decrease the noise somewhat (see Figure 2.5d), the ToF camera is still
outperformed by a cheap laser scanner. This limits the use to static scenes and even than
is not nearly as good as a laser scan. The depth measurements are strongly contami-
nated by random noise which can, at 1 m average scene distance, vary by up to 5 cm.
Depth measurements also become more unreliable towards the boundary of the field of
view, since there, optical aberrations like vignetting play a stronger role, and the PSNR
of the returned signal naturally decreases. Not only seems there to be a systematic bias
(see Figure 2.6c): but Figure 2.6d shows variance in random noise increases strongly to-
wards the field-of-view boundary. Noise variance is also much higher at mixed pixels that
integrate over depth discontinuities in the scene. Fortunately, pixels with high measure-
ment uncertainty typically exhibit low measurement intensity and therefore the camera’s
raw intensity data can be interpreted as a confidence map. Experimentally, we could verify
that the depth readings at a single pixel location over time follow a slightly heavy-tailed
distribution.

In addition to random noise, the camera is likely to exhibit a systematic measurement
bias that may depend on reflectance, angle of incidence, and environment factors like
temperature and lighting. Since focus in literature has shifted to ToF cameras based on
correlation, no studies are known that research these errors in detail. In [24] it is speculated
that most of the research on correlation based ToF cameras also applies to shutter based
one.
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2.1 3D Time-of-Flight Cameras

Laser Scanner

Swissranger 3000

3DV ZCam

Canesta

Point Grey

Color Cam

Figure 2.4: Various Time-of-Flight cameras on the Stanford ToF Camera Array
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2 Background

(a) Color Image (b) Single 3D Recording

(c) Laser Scan (d) Averaged 3D Recording

Figure 2.5: ZCam - Single and Averaged (n = 50) recordings in comparison to a laser scanned
model
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2.1 3D Time-of-Flight Cameras

(a) Single 3D Recording (b) Averaged 3D Recording
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Figure 2.6: ZCam - Single and Averaged (n = 100) recordings and the resulting mean and variance
plots
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2.1.3 Correlation Based Operation

The most prominent approach for Time-of-Flight systems uses the phase shift that takes
place when light gets reflected on an objects surface. Both the Swissranger cameras by
MESA Imaging [35, 36] and the PMD cameras [49, 26, 40] build on this principle. These
manufactures already do ship their cameras and they can be purchased, even though they
are still way more pricy than initially promised. Canesta’s older models used correlation as
well [9]. Apparently they have developed a new type of sensor that is more similar to the
shutter based approach [15].

Φ

g(t)

s(t)

Figure 2.7: Correlation Based Time-of-Flight Measurements

Correlation based cameras have a light source that emits in theory a sinoidal waveform
(see Figure 2.7). In practice the waveform is somewhat different since all sorts of physical
effects do not allow for perfect waveform generation. The principles of the correlation
approach have been described in [9, 26, 36] but we follow notation wise [24]: given an
signal g that is emitted from a light source at the camera and a signal s that represents the
reflected signal for the scene, the correlation reads

c(τ) = s⊗g = lim
T→∞

∫ T/2

−T/2
s(t) ·g(t + τ)dt . (2.4)

Here τ is an internal phase shift that occurred during signal generation. Then again we
assume sinusoidal signals modulated at frequency ω . We introduce a damping coefficient
a for the incident signal (i.e. due to non perfect reflection) and a correlation bias b. With φ

being the phase offset relating to distance the signals read:

g(t) = cos(ωt)s(t) = b+acos(ωt +φ) . (2.5)

Substituting Equation 2.5 into Equation 2.4 and simplifying yields

c(τ) =
a
2

cos(ωτ +φ)+b . (2.6)
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2.1 3D Time-of-Flight Cameras

.

The correlation function c(τ) is then sampled to solve for φ . Four samples are the
minimum to solve, more samples enhance the precision of the system but are expensive
to realize in hardware. Therefore all known cameras sample only four times at τ = i · π

2 :
Ai = c(i · π

2 ), i = 0 . . . ,3. Then φ is readily computed as

φ = arctan(
A3−A1

A0−A2
) . (2.7)

Once computed, substituting φ into

d =
c

4πω
φ (2.8)

determines the distance at the very pixel (with c being the speed of light).

All cameras house the light source (see Figure 2.4 for an example of the Swissranger
SR3000) and use infrared LEDs. The SR3000 for example uses light at λ = 850nm has
approximately 1W illumination power. Most other components of these ToF cameras are
the same as with color cameras such as the optical system. A drawback of the corre-
lation approach as compared to the shutter based one is the limited resolution. Since
custom CMOS chips are required (and they also achieve a rather low fill factor) the res-
olutions is limited to 176× 144 (Swissranger SR3000), 204× 204 (PMD’s CamCube) or
64×64 (Canesta). The Z-Cam could use any CCD grayscale sensor with a possibly much
larger resolution but is in fact limited by the SNR for larger resolutions. To compare both
approaches Figure 2.8 has the same sample scene and Figure 2.9 shows the noise char-
acteristic, here for a Swissranger SR3000.

2.1.4 Error Sources

As with all technical systems Time-of-Flight cameras are not without flaws. Several
sources for errors exist which degrade the quality of the recording. Some of them are
unique to ToF cameras while others are known with other types of cameras. Here we will
describe only the most common error sources and for completeness we refer the interested
reader to extensive studies as found in [39, 26, 21, 31]. Lately even theoretical models of
ToF sensors have been created that help to explain the errors [8, 42].

Low Resolution As previously mentioned ToF systems suffer from a rather small reso-
lution. Even the Z-Cam has a resolution that is easily surpassed by webcams and mobile
phones. This is due to the special design of ToF sensors that are relatively new com-
pared to current CCD/CMOS technology. Hence less optimization has been applied and
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(a) Color Image (Point Grey) (b) Single 3D Recording

(c) Laser Scan (d) Averaged 3D Recording

Figure 2.8: ZCam - Single and Averaged (n = 50) recordings in comparison to a laser scanned
model
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2.1 3D Time-of-Flight Cameras

(a) Single 3D Recording (b) Averaged 3D Recording
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Figure 2.9: ZCam - Single and Averaged (n = 100) recordings and the resulting mean and variance
plots
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Figure 2.10: Systematic bias of a SR3000 ToF camera, Figure courtesy of Kim et al.

research. Furthermore the illumination sources are limited in their power to stay within reg-
ulations for eye safety. This in turn limits the amount of photons and relatively large pixels
are required. Furthermore the low fill-factor prohibits higher resolutions. The fill factor is
commonly defined as the ratio between active sensing area and the total area of a chip.
With ToF cameras, especially correlation based ones; this is rather low since quite some
additional electronics need to be placed on the chip.

General noise, noise not distributed equally In general the noise level tends not to
be distributed equally among a recorded frame. In Figures 2.6c and 2.6d (ZCam) as well
as Figures 2.9c and 2.9d (Swissranger) we have plotted the mean and variance of the
noise. From our experiments we believe the noise is distributed in a radial fashion, i.e.
increased with the distance from the center pixel. This could be explained well with pixels
closer to the edges the beam has to travel further, when recording a flat objects (re-call
ToF cameras record in the rayspace, Chapter 2.1.1). Due to the increased distance, less
light is returned to the camera, hence noise increases. Also the illumination source is less
powerful towards the edges, which in turn decreases the returned light towards the borders
even more.

Systematic error All ToF cameras exhibit a systematic error that is dependent on the
meseaured depth. Most research has been carried out for correlation based cameras, but
we encountered similar effects also for the shutter based system. Most notably is that the
error is not monotonic increasing with distance, but follows some sort of sinoidal pattern
(see Figure 2.10). In [21] Kim et al. found a 6th degree polynomial as a good fit. This
reduced the average error from approx. 5cm to nearly 1.4 cm (along with some other
correction). To date the reason for that error remains unknown, but some argue it is due to
imperfect waveform generation for the scene illumination.
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Figure 2.11: Noise is strongly related with the intensity seen at the camera, Figure courtesy of Kim
et al.

Error on low reflectant objects As discussed previously if little light is returned to the
camera noise increases. Another obvious reason for little light returning to the camera
are objects that absorb most of the light, such as those which appear black to the human
observer. Again Kim et al. studied this phenomenon in detail: they found that if the normal-
ized intensity returned from an object is below a certain level the error increases heavily
(see Figure 2.11 for details). We later make use of this fact and label measurements below
that threshold as unreliable.

Measurement at borders (flying pixels) / Motion Blur When recording objects with
distinct edges, one encounters points returned that represent a depth that is somewhere
between the closer and the further away object. As these points have no obvious con-
nection to their surrounding they are referred to as flying pixels. Their occurrence can be
perfectly well explained when assuming ToF cameras operate with the same principal as
color cameras. Imagine an edge between a white and a black region on an object. When
recorded with an ordinary camera, pixels on the border on the edge will appear gray, as
the camera integrates intensities over the area of the pixels. And here the intensities are
partly black and party white. The same happens to Time-of-Flight cameras, where the
camera would integrate over depth samples and return an average of the two depth lev-
els when recording an edge. In the community there have been reports, where the flying
pixels were outside of the expected range (i.e. the measured depth was larger or smaller
respectively than the background or foreground). We could image such a phenomenon
only with correlation based systems, since they are non-linear systems. Nevertheless dur-
ing our experiments we never encountered such an error. On the contrary we performed
measurements with the correlation-based Swissranger SR3000 to investigate the behavior
along edges. When recording a plane that is slightly rotated with respect to the pixel grid,
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Figure 2.12: ToF cameras as a linear system towards depth discrepancies: the linear descent hints
that we can treat ToF as linear systems

a linear system such as color cameras are, would show a smooth linear transition between
the two levels. Now please refer to Figure 2.12 where the measured depth for the previous
setup is plotted. The left pixels record an area that is completely on the near plain, where
as the right pixels corresponds to the far plain. The center pixels record the mixed area,
where flying pixels would be encountered. Since the plain has been rotated slightly the
ratio between far and near plain constantly decreased. Clearly no spikes are included in
the descent which would correspond to erroneous flying pixels. The mostly linear descent
hints that we can treat a ToF cameras as a linear system, which is an important criteria for
superresolution to be applicable.

Another source of error all cameras are prone to is motion blur. Due to the scene not
being static, the depth changes within the integration period, which is even more severe
due to multiple samples being involved in computing the correlation. We did encounter
such blur also for Time-of-Flight cameras. But since superresolution at the current state
requires static scenes anyways we did not investigate further. A simple measure is to keep
integration times short (at the cost of higher noise obviously).

Smaller issues: Multiple Reflectances, Multiple Cameras, Outdoor usage / high con-
trasts / background light subtraction Multiple reflectances can also degrade the sen-
sor’s readings, as they can be interpreted as strong noise on the true signal. Similar false
signals can be generated when two or more cameras are operating at the same time. Then
light emitted by the first camera is recorded by the second. Simple approaches use cam-
eras running at different frequencies (such as in [23]). More advanced techniques could
include using advanced waveform patterns, such as gold codes. With these orthogonal
codes multiple sensors could operate at the same frequency without interference.
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superresolution_grai_sp08_20080516.ppt 5

►

Figure 2.13: The principle of superresolution: recording the same scene multiple times and displac-
ing the camera slightly between recordings. This allows for a reconstruction of a higher resolution
image.

When operated outside of a controlled lab environment further challenges unfold: light
hitting the sensor directly such as from the sun is a major problem, since they saturate
the pixels quickly. Some manufactures now ship their cameras with background light sub-
traction support that helps in such situations. Still high contrasts, i.e. by highly reflective
materials are major challenges for ToF cameras operated outdoors.

2.2 Superresolution For Images

The resolution enhancement for Time-of-Flight cameras that we developed will draw on a
technique called multi-frame superresolution that has been known in other fields such as
image processing. Here we provide a short introduction: the idea behind superresolution
is, that the information that is available about a scene is increased, if multiple shots are
taking from approximately the same viewpoint. The underlying assumption is, that the
changes to the viewpoint are so little, that effects caused by the viewpoint shift, such as
parallax effects, can be neglected. One might argue that in order to increase the resolution
of an image, it could simply be upsampled. While this obviously increases the physical
resolution, no information (such as fine detail, previously below the sensors resolution)
that was not present in the original image, can be included in the upsampled one.

Image based superresolution targeted at standard color or intensity images has been
well studied for many years [7][17][47]. Multiple low resolution images are aligned and then
a high resolution image is estimated which explains the image stack. Interested readers
will find a survey informative [2].

Some researchers have formulated a joint optimization of superresolution together with
shape-from-X. Shape from photometric cues [18] as well as defocus [38] have both been
explored.
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The noise and data statistics of depth data exhibit effects which may not be found in
normal color images, so it is not obvious that color based methods are applicable. Indeed,
earlier work targeted at depth superresolution pursued an alternate strategy. Later we
show that color methods are applicable in the depth domain, and that they can perform
better than the specialized depth superresolution methods previously introduced.

2.3 Improving ToF sensors

The depth accuracy of Time-of-Flight sensors can be increased by a variety of methods,
e.g. by accounting for ambient light [10], simulating the shape of the reflected signal [19],
and performing time gated superresolution [30]. While these methods improve resolution
in the depth direction, they all operate at the level of peak detection in the sensor itself and
are not directly related to improving resolution in the X-Y plane as discussed in this work.
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Ever since cameras existed, people wanted to increase their resolution, i.e. obtain more
information about the scene recorded. Camera chips are steadily increasing their capture
resolution, but people wish for a higher pace. This is why researchers investigated in
ideas beyond improving the manufacturing process to boost camera resolution. Nearly 25
years ago R. Tsai and T. Huang [48] introduced the idea of using many, slightly displaced
recordings to reconstruct a higher resolution one. This follows a pattern well-known in
signal processing, where sampling a signal at multiple sampling frequencies allows for
a better reconstruction of the signal. We will use this key idea later to improve depth
recordings. Since depth recordings have a comparably low resolution to current color
cameras, researchers have investigated other methods to boost resolution. Here we will
show smart upsampling techniques and methods that fuse color and depth information.

3.1 Filtering & Smart Upsampling

Since ToF cameras produce quite noisy data, a first approach was to filter the data to en-
sure the usable resolution is close to the specified resolution. For ToF cameras not only
return depth data, but also an intensity image, Boehme et al. [1] pointed out that these
two are related by the shading constraint, if the reflectance properties of the surfaces are
known. They assumed a general reflectance model, here Lambertian reflectance, and
used a probabilistic model for the image formation. Then they could compute the maxi-
mum a posteriori probability of the scene. Their results have significantly less noise that
makes small features appear that previously were hidden by the noise, hence increasing
the usable resolution.

The intensity image also allows to perform a simple background / foreground separation,
assuming the background is quite far away and thus returns only very little light. This fact
was used by Lindner et al. [32] to perform smart upsampling. They try to estimate the
edge directions and try to include that information in the upsampling process to have a
depth map that has the same resolution as a color recording, allowing for easy fusion.
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3.2 Depth And Color Fusion

Color cameras usually have a way higher resolution than ToF cameras, but high quality 3D
information recovery using color cameras (i.e. using stero methods) has proven difficult.
Therefore it seems logical to combine the strengths of color cameras and ToF cameras, in
particular since edge discontinuities often correlate with color discontinuities. Hence one
requires a ToF camera and a color camera closely placed to each other. Ideally they would
share the same optical system, but this normally requires a beam splitter and hence is
quite costly (the first ToF camera produced by 3DV featured such a system. The Z-Cam
now used two different lens systems to keep manufacturing costs low). If two optical paths
are used, the homography between the two has to be pre-calibrated or can be computed
on-the-fly for some algorithms. Depth image superresolution then is accomplished by us-
ing a high resolution color image and upsampling the low resolution depth image. The
regularizer ensures edge consistency between the color and depth image. The difference
in the various methods is mostly in the formulation of the regularization term. The idea
of combining a color image with a depth recording was first proposed by Diebel & Thrun
[6]. Their formulation took the form of a MRF. This method proved the feasibility of the
approach, but also was computationally expensive. With the dawn of bilateral filtering,
Kopf et al. proposed joint bilateral upsampling in the image plane [25]. Another successful
approach was by Yang et al. [51] to perform bilateral filtering on the cost volume. These
methods can reproduce high frequency detail, however they assume that color is always
correlated with depth. With textured objects this is often not the case, as it can be seen
in Figure 3.1. Here the checker board on the right (Figure 3.1a) leads the fusion method
(here a implementation of Diebel & Thrun’s method) to create a checkerboard structure on
the originally plain surface of the board.

Recent research has addressed the problem and is successful in diminish the texture
copy effect [5] while at the same time operating in real-time. We will later propose a
method, which is inherently robust against texture copying by relying on depth information
only.

When using more than one camera, stereo methods can be used to compute depth infor-
mation (for a overview of recent advances and benchmarks see the Middleburry Database
[41]). One of the most problematic objects for stereo methods are un-textured objects.
Here the algorithms fail to establish correspondences between the two camera images,
which are required to compute depth. In [52] Zhu et al. combined a stereo vision system
with a ToF camera to significantly improve the stereo reconstruction. Nevertheless this
requires three cameras while we will propose a method that needs only one Time-of-Flight
camera.
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(a) Color recording in high resolution (b) False structure by joint bilateral upsampling

Figure 3.1: Texture Copying - Color-Depth fusion methods assume color discontinuities are corre-
lated with depth edges. This can lead to an effect known as texture copying as seen on the checker
boards surface

3.3 Oversampling

Here, the goal is to enhance the resolution by combining only depth recordings of a static
scene that were taken from slightly displaced viewpoints. Kil et al. [20] were among the
first to explore such an idea for laser triangulation scanners. They heavily oversample the
scene by taking up to 100 scans from similar viewpoints to achieve four-times upsampled
geometry. Since their data is so dense, and the random noise level of a laser scanner
is significantly lower than that of a ToF camera, they can obtain good results by regular
resampling from the aligned scan points with associated Gaussian location uncertainty.
Reportedly, results may exhibit unnecessary blur and it is unlikely that this data fusion
principle will work for highly noisy ToF data.

3.4 MRF based superresolution methods

Only recently researchers looked into performing superresolution on ToF camera data.
Rajagopalan et al. [37] proposed a Markov-Random-Field based resolution enhancement
method from a set of low-resolution depth recordings that formulates the upsampled 3D
geometry as the most likely surface given several low resolution measurements. Their
MRF uses a neighborhood system that enforces an edge-preserving smoothness prior
between adjacent depth pixels. Their formulation of the problem bears two disadvantages:
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first complex parameter selection and secondly the formulation of the prior renders the
problem non-convex, and hence more sophisticated solvers are required.
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4 Image Adapted Superresolution

It is our goal to obtain high-quality 3D measurements of a static scene despite the sig-
nificant noise in the raw data (see Figure 4.1 for a visual motivation). By performing su-
perresolution, we seek to increase X-Y measurement resolution and, at the same time,
reduce the overall random noise level. We seek to apply the idea of superresolution known
from color images do 3D data. To this end, several depth maps captured from minimally
displaced viewpoints would be aligned, and subsequently combined into a higher resolu-
tion depth image. From this superresolved depth image, we can eventually reconstruct
superresolved 3D geometry.

In this chapter we will introduce the necessary recording setup for superresolution
(Chapter 4.1) and show how superresolution methods previously used for color images
can be used towards depth data (Chapter 4.2). We present the results in Chapter 4.4,
where we also compare the new ethod against upsampling methods that fuse color and
depth information.

4.1 Recording Setup

Key for multi-frame superresolution to work with Time-of-Flight sensors is that a ToF cam-
era has some similar properties to a regular optical camera. Most importantly, it must

Figure 4.1: Superresolution for Time-of-Flight cameras transforms multiple raw recordings (such
as on the left) into higher detail, less noisy representations (as on the right)
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Figure 4.2: The suggested processing pipeline: first raw recordings are made which the superres-
olution process then fuses and a more detailed 3D geometry is the result.

return at a pixel position the average depth of the area covered by the pixel. Speaking
mathematically, the pixel value must be the integral of all depth over the pixels coverage
area. We have experimentally investigated and the previous section argues that this prop-
erty indeed holds true.

Our processing pipeline (see Figure 4.2) starts by recording the raw depth maps, per-
forming superresolution on them and converting the result into 3D geometry. Below we
will detail the recording process; this and the next chapters present two algorithms that
perform superresolution, along with rendered 3D geometry.

In our measurement setup, the depth camera is located between 50 cm and 150 cm
away from the scene. Typically, we capture N = 15 images by slightly translating the cam-
era orthogonally to the viewing direction (see Figure 4.3a). Please note that the alignment
of images captured by the above procedure effectively leads to the creation of a multi-
perspective image in which parallax effects may play a role. One way to overcome these
effects would be to slightly rotate the camera around the center of projection rather than
translate it. Compare with Figure 4.3b, this indeed diminishes this effect, since we are
recording in the so-called rayspace. However, with as small displacements as we apply it
we could experimentally not verify an increase in reconstruction quality if the camera is ro-
tated, so the parallax effect cen be ignored. Therefore, we always record with translational
offsets.

From the first to the last frame of a superresolution sequence, the camera is, in total,
displaced by around 1 cm to 1.5 cm. Here the scene distance was 1.5 m on average.
In order to cancel out random noise, we average over multiple depth measurements at
each camera position. We also discard depth measurements on the outer boundary of the
image due to the previously described higher measurement uncertainty.

4.2 Algorithm

By appropriately combining the low resolution depth images Yk, k = 1, . . . ,N taken from
slightly displaced viewpoints, we can create new depth maps at significantly higher res-
olution. Using reprojection, the upsampled depth maps can then be converted to high
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Figure 4.3: The recording setup: rotating between two captures is the theoretically correct ap-
proach. If the displace is kept small translation can also be used.

resolution 3D geometry. Our depth superresolution method is based on the approach by
Farsiu et al. [7] who investigated superresolution for normal photographs.

We cast superresolution as the problem of inverting the formation process of low reso-
lution depth images of a high resolution 3D scene. To formulate the problem, we make the
simplifying assumption that the formation process of a depth image can be described in
analogy to the image formation process of a normal optical camera. The quality of our final
results shows that this simplification is valid. For a single depth image Yk, the formation
process therefore looks as follows:

Yk = DkHkFkX+Vk ,

where X is the original scene or, in other words, the superresolved image of the 3D scene
from which we sample. Henceforth, we will refer to the upsampling factor between low and
high resolution images in x- and y-direction as β . Fk is a translation operator representing
the motion between the superresolution image and the current low resolution image. In
our setting, we assume pure translational motion. Hk is a blur operator accounting for the
blur introduced during the capture process (i.e. due to the optic system or motion). In
our experiments we assumed no blur, hence Hk was equivalent to the unity matrix. Dk is
a decimation operator modeling the downsampling from the superresolution image to the
size of the low resolution image. Finally Vk represents additive noise inherited during the
capture process. To extract the high resolution image from the set of low resolution depth
maps, we need to solve the following minimization problem:

X̂ = argmin
X

[
N

∑
k=1
‖DkHkFkX−Yk‖p

p

]
, (4.1)
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where [7] readily argues that p = 1 gives optimal results in terms of robust statistics. Since
with a typical set of images this estimation problem is ill-posed, one is to add a regulariza-
tion term ϒ(X) with weight λ yielding

X̂ = argmin
X

[
N

∑
k=1
‖DkHkFkX−Yk‖p

p +λϒ(X)

]
(4.2)

Different regularization terms such as Tikhonov regularization or Total Variation could be
imagined. For this work, we used bilateral regularization. This robust technique, also re-
ferred to as bilateral filtering, has the advantage of preserving edges and removing random
noise in areas of slowly varying depth. Also, the computation of the regularizer is relatively
cheap. The bilateral regularization is given by

ϒ(X)B =
P

∑
l=−P

P

∑
m=0︸ ︷︷ ︸

l+m>=0

α
|m|+|l|∥∥X−Sl

xSm
y X
∥∥

1

here Sl
x and Sm

y are shift operators that perform a shift in x or y direction by l or respectively
m pixels. The scalar weight α , with 0 < α < 1, controls the spatial influence area of the
bilateral constraint, P≥ 1 specifies the size of the neighborhood used for bilateral filtering.
Please refer to [7] to learn about the equivalence of the above formulation to the original
bilateral filter proposed in [46]. The robust bilateral formulation in Eq. (4.2) is preferable
over quadratic penalization since the latter would perform worse in the presence of the
heavy-tailed random noise in the raw depth data.

4.3 Implementation

Solving the optimization problem in Eq. (4.2) yields a superresolved depth image of the
scene. In practice, we employ the solver implementation provided by Milanfar [34] to com-
pute the solution. From the superresolution depth image, we reconstruct 3D geometry by
reprojection. Prior to 3D reconstruction, we median filter the superresolution depth image
with a kernel size of 3× 3. Please remember that the effective metric pixel size in the
high-resolution image is µ/β .

4.4 Results

We have tested our approach on three different scenes, all of which show geometric detail
that is close to the X-Y resolution limit of the depth camera in one frame. The test scenes
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(a) Depth map in native resolution (b) Depth map by superresolu-
tion, β = 4

(c) Depth map by joint bilateral
upsampling

(d) 3D model from native resolu-
tion

(e) 3D model from superresolu-
tion, β = 4

(f) 3D model from joint bilateral
upsampling

Figure 4.4: Wall plug scene - superresolution (b),(e) unveils fine details, previously not visible in
native resolution (a),(d). Joint bilateral upsampling (c),(f) sharpens the image, but introduces false
geometry. For better visibility the contrast of depth maps was enhanced.

also feature areas that contradict the assumption color and depth discontinuities are well-
aligned, which allows us to show that methods relying on this simple prior statistics will
perform worse.

Resolving thin structure: We wanted to verify that our superresolution method can re-
solve thin structures. Therefore our first setup shows three wall plugs in front of a white
wall, Fig. 4.4. The scene is approx. 50 cm away from the camera, and was recorded from
15 displaced positions to perform superresolution. For this scene, the camera was config-
ured to record objects from 0 cm up to 100 cm away. To illustrate the performance of our
method, we focus on a dent and a long thin gap in the wall plugs which are marked as A
and B, respectively, in Fig. 4.4. Since these features are close to the resolution limit of the
Z-cam, they do not appear well in a single depth image, Fig. 4.4a, and consequently also
not in the corresponding low resolution 3D reconstruction, Fig. 4.4d. In contrast, our 4-
times superresolved result accurately captures these details, as visible in the depth image
Fig. 4.4b, and in geometry Fig. 4.4e where they appear as true 3D structure with correct
depth. To display the 3D geometry we convert the depth maps into triangulated height

37



4 Image Adapted Superresolution

fields and render them using basic Phong shading. Please note that for fair comparison
we always perform superresolution at 8-bit depth precision in all tested methods, as this
is the limit of the software by Milanfar et al. [34]. Therefore, discretization artifacts in the
form of depth steps are visible in the renderings. To verify that our 3D reconstructions do
not suffer from incorrect scaling or distortion we compared the size of several landmarks
in our results to their real-world size. In all cases, this comparison showed an exact match
which proves the reliability of our algorithm.

For comparison, we implemented a joint bilateral upsampling (JBU) approach [25],
which uses a high-resolution color and a low resolution depth image to raise the depth
resolution to the one of the color image. The color image was recorded using a standard
digital camera and has been manually aligned using a homographic warp. By inspection
the error was determined to be three pixels at maximum. The method’s implicit assump-
tion that color and depth edges are collocated is frequently violated in our wall plug scene
causing erroneous reconstructions. Although the depth map, Fig. 4.4c, shows crisp edges
which is visually pleasing if only the gray scale image is looked at, the actual reconstruc-
tion exhibits several errors. For instance, the method wrongly reconstructs the shadowed
area B on the ripple of the left wall plug as a depth discontinuity that protrudes all the way
through the scene Fig. 4.4f. Also, joint bilateral upsampling performs excessive smoothing
in areas with low image gradient. Therefore, the dent in area A on the right wall plug,
whose edges are not clear in the color image, is entirely smoothed out. Also, shadows
on the back of the table appear as geometry merged to the lower part of the plugs, and
the top of the right plug is cut off due color similarity to the background. We thus con-
clude that a slightly higher remaining level of noise, as in in our results, is preferable over
such excessive smoothing since in the latter case actual shape detail is lost or incorrectly
estimated.

Preserving sharp edges: Another important characteristic of superresolution is to pre-
serve sharp edges. Hence, a second scene, with a planar checkerboard spaced approx.
50 cm from a white background, was recorded to prove that our method correctly captures
both sharp edges and smooth regions, Fig. 4.5a. In contrast, the joint bilateral upsampling
method runs into difficulties in the presence of strong texture on actually planar geometry.
Here the camera was configured for recording between 70 cm and 200 cm. The board fea-
tures a color pattern with strong intensity gradients. The pattern is slightly smaller than the
actual size of the board, which has a 1 cm white boundary that is visually indistinguishable
from the white background.

In Fig. 4.5a, we marked the location of the actual depth edge with lines. The low resolu-
tion depth image (Fig. 4.5d) has an apparent staircase effect on the edge, while the edge
appears sharp and crisp in the depth map created by the proposed superresolution method
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(a) Color recording in high resolu-
tion

(b) True structure by superresolu-
tion, β = 4

(c) False structure by joint bilat-
eral upsampling

(d) Depth map in native resolution (e) Depth map by superresolu-
tion, β = 4

(f) Depth map by joint bilateral up-
sampling

(g) 3D model from native resolu-
tion

(h) 3D model from superresolu-
tion, β = 4

(i) 3D model from joint bilateral
upsampling

(j) Edge detail at native resolution (k) Edge detail by superresolu-
tion, β = 4

(l) Edge detail by joint bilateral up-
sampling

Figure 4.5: Board scene - The upper row shows that "phantom" geometry is introduced by joint
bilateral upsampling (b), whereas superresolution retains the true geometry (c). This effect is also
visible in the depth maps one row below. The two lower rows show sharp edges being preserved
by superresolution, while joint bilateral upsampling yields round edges.
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(Fig. 4.5e). The joint bilateral upsampling method is tricked by the non-collocation of the
intensity gradient (black pattern boundary) and true depth discontinuity. Consequently, the
true depth edge is smoothed with the background leading to a blurred edge in the JBU
depth image, Fig. 4.5f. This effect can be studied best in 3D. While our superresolved
geometry, Fig. 4.5h, shows a sharp edge with sharped depth discontinuity, the edge of the
joint bilateral upsampling result is incorrectly shaped like a curved ramp, Fig. 4.5i. The
rendering of the depth edges in a cross-sectional views, Fig. 4.5j-4.5l, makes this effect
even more apparent. Or result shows a sharp corner and a straight depth edge, Fig. 4.5j,
whereas the JBU result is erroneously curved, Fig. 4.5l. Another problematic region for
joint bilateral upsampling is the surface of the checker board itself. Whereas it appears
up to noise as a plain, the color gradients in the checker board provoke the bilateral filter
to emboss this structure into the geometry (Fig. 4.5c). In contrast, our upsampling result
shows a planar board, Fig. 4.5b.

Gain in resolution: To further demonstrate the true gain in resolution, we recorded three
planar triangular wedges 30 cm in front of a flat wall. They exhibit clear sharp depth edges
and, close to the tips, fall below the resolution limit of the camera. The recording settings
were Pd = 50 cm and Pw = 100 cm. While the depth map at original camera resolution
exhibits strong staircase aliasing at the boundaries, Fig. 4.6a, our 4-times upsampled result
faithfully captures crisp depth edges, Fig. 4.6c. Consequently, the upsampled 3D geometry
also shows sharp edges, Fig. 4.6d. Simple bicubic upsampling of the low resolution data
cannot produce the same superresolution effect. It mainly upsamples the staircase pattern
and boosts the random noise, Fig. 4.6b.

Our method is subject to a few limitations. Since several depth images have to be com-
bined it is, in contrast to joint bilateral upsampling, only suitable for static scenes. Also,
given a runtime of approximately one minute to compute a superresolved depth map, our
approach is not suitable for real-time applications. Furthermore our approach relies on
faithful image registration which may be difficult in scenes with few distinct depth discon-
tinuities. In the future, we plan to capitalize on noise characteristics and known measure-
ment uncertainty, from which we expected improved superresolution performance.

We will also perform a more detailed analysis of the range of achievable upsampling
factors in dependence on scene structure and recording conditions. Currently, we did tests
with β in the range of 2−6. Overall, we found that, in our test scenes, β = 4 provides the
best compromise between extracted shape detail and model size.

We would also like to remark that both tested superresolution methods rely on a bilateral
constraint of some form. It is not the constraint itself that makes one method preferable
over the other, but the particular way how it is enforced. Joint bilateral upsampling enforces
the constraint in two different data domains, namely color and depth, and implicitly relies
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(a) Depth in native resolution (b) Depth by bicubic upsampling

(c) Depth by superresolution (d) 3D model from superresolution

Figure 4.6: Wedge scene - superresolution (β = 4) achieves true resolution enhancement and
shows straight alias-free edges at depth boundaries (c),(d). In contrast, staircasing artifacts are
clearly visible at native resolution (a) and in the bicubic upsampled result (b). Additionally noise is
significantly reduced by superresolution.
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on the wrong prior. In contrast, we enforce the constraint on depth data only and do not en-
force the same excessive smoothing as the former approach which renders advantageous
in our setting.
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While the previous chapter showed that superresolution can be applied towards depth
data, this chapter focuses on finding an optimal superresolution approach geared towards
Time-of-Flight camera systems. Specifically this algorithm has an edge prior tailored to
depth data and incorporate the additional information that is available by the intensity
maps provided by the depth camera. This new algorithm called LidarBoost has recently
published at CVPR [45].

5.1 Algorithm

Similar to Chapter 4, in our measurement setup we capture N depth images of a static
scene , Yk ∈ Rn×m, each having depth sensor resolution n×m. Each depth image (also
called depth map) is a grid of depth pixels, where each depth pixel records the distance to
a 3D scene point along the measurement ray through the pixel. Given intrinsic ToF camera
calibration data, a depth map can be reprojected into 3D geometry in world space. The
Yk are captured from only slightly displaced viewpoints which is why parallax effects can
be neglected. Prior to superresolution, all depth images are registered against a reference
frame out of Yk. Once registered, we compute a single high resolution depth image with β

times higher resolution X ∈ Rβn×βm by solving an optimization problem of the form:

minimize Edata(X)+Eregular(X) .

The first term Edata(X) is a data term measures agreement of the reconstruction with the
aligned low resolution maps. Eregular(X) is a regularization or prior energy term that guides
the optimizer towards plausible 3D reconstructions if data points are sparse, Chapter 5.1.

This formulation is common to most superresolution methods. However their data and
prior terms are designed for intensity images and cause strong artifacts when applied
to depth images, as shown in Fig. 5.7c for the example of our previous algorithm. In
contrast, our prior and data terms explicitly take into account the specifics of the 3D re-
construction problem as well as the characteristics of the time-of-flight sensors used. In
contrast to related 3D upsampling methods, our formulation yields a convex optimization
problem which makes the superresolution procedure efficient and robust. Overall, our su-
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perresolved depth maps therefore exhibit a much higher quality than it was achieved with
previous approaches for ToF superresolution.

Data Term

The data term ensures that the final superresolved depth map is coherent with the regis-
tered low resolution measurements Yk ∈Rn×m. During preprocessing, N−1 frames out of
the Yk frames are aligned against a reference frame by computing for each a displacement
vector. Typically, the first frame from Yk is chosen as reference frame. Currently, we use
hierarchical Lukas Kanade optical flow [33] to compute the registration but alternative reg-
istration approaches would be feasible. This process and the upsampling described below
transform each original frame Yk into an aligned frame Dk ∈ Rβn×βm:

It is our goal to compute a higher resolution version of a 3D depth map from aligned low
resolution depth maps. When solving for the high resolution image we therefore have to
resample the aligned high-resolution depth pixel grid of the target image. We performed
experiments to determine the best resampling strategy. It turned out that a nearest neigh-
bor sampling from the low resolution images is preferable over any type of interpolated
sampling. Interpolation implicitly introduces unwanted blurring that leads to a less accu-
rate reconstruction of high-frequency shape details in the superresolved result.

Our data term takes the following form:

Edata(X) =
N

∑
k=1
‖Wk .*Tk .*(Dk−X)‖2 ,

where .* denotes element-wise multiplication. Wk ∈ Rβn×βm is a banded matrix that en-
codes the positions of Dk which one samples from during resampling on the high-resolution
target grid. Tk ∈ Rβn×βm is a diagonal matrix containing 0 entries for all samples from Dk

which are unreliable according to the ToF sensor’s readings, as described in the following:

Since a ToF camera relies on a sufficiently strong return of the emitted IR pulse to mea-
sure depth, certain scene characteristics lead to biased or totally wrong depth estimates.
In consequence, if a surface reflects light away from the camera, or if it absorbs most of the
light, depth measurements become unreliable. An example can be seen in Fig. 5.6, where
the ball has problematic reflectance properties and the print on the box absorbs most of
the light. Fortunately, a low amplitude of the returned light wavefront at each pixel (the
SR 3000 camera we use gives access to an amplitude image) indicates the occurrence of
such difficult situations and, thus amplitude serves as a form of confidence measure. We
therefore use a thresholding approach, to detect and exclude low-confidence measure-
ments with low amplitude. Technically this is implemented in the matrix Tk which multiplies
unreliable samples by 0.
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We would like to remark that the choice of error norm is critical to the quality of the
final result. In essence, the norm decides at each high resolution depth pixel on how to
choose a best target depth position given the depth values from all low resolution maps
at that position. The previous depth superresolution methods as well as many image
superresolution methods, employ a `1-norm. While a `1-norm forces the depth value at a
certain high-resolution grid point towards the median of registered low-resolution samples,
an `2-norm yields their mean. For very noisy data, the median is certainly reasonable
since it rejects outliers. In contrast, the mean yields a smoother surface reconstruction,
since the averaging cancels out recording noise. From our experience using ToF data and
our method, it is more beneficial to capitalize from the smoothing effect of a `2-norm.

Regularization Term

The regularization or prior term guides the energy minimization to a plausible solution, and
is therefore essential if data are sparse and noise-contaminated.

We seek a prior that brings out high frequency 3D shape features that were present
in the original scenes in the upsampled 3D geometry. At the same time the prior shall
suppress noise in those regions that correspond to actually smooth 3D geometry. Finally
we seek it to be convex.

All these properties can be enforced by designing a prior that favors certain distribution
of the spatial gradient in the final depth map. On the one hand we want to preserve local
maxima in the spatial gradient that correspond to high frequency features, e.g. depth
edges. On the other hand, we want the overall distribution of the gradient to be smooth
and relatively sparse which cancels out random noise.

One way to enforce this property is to resort to a sum-of-gradient-norms regularization
term that can be computed efficiently, and that has also been used by previous image
superresolution methods. However, the implementation of this regularizer for image su-
perresolution often enforces sparseness on individual differences contributing to an overall
finite difference approximation of the spatial gradient. For instance, the regularizer em-
ployed at our previous algorithm essentially enforces sparseness on the elements of the
approximated vector (i.e. sparseness on the individual finite differences). Although this
prior manages to preserve high frequency detail to a certain extent, it completely fails in
areas of smooth geometry where it creates a severe staircasing pattern (e.g. Fig. 5.1f).
While small staircasing artifacts may not be visible if one works with intensity data, 3D
reconstructions are severely affected.

We have therefore designed a new sum-of-norms prior that can be efficiently computed
and that is tailored to produce high-quality 3D reconstructions. Let ∇Xx,y be a combined
vector of finite difference spatial gradient approximations at different scales at depth pixel
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5 LidarBoost

position (x,y). Then our regularization term reads:

Eregular(X) = ∑
x,y
‖∇Xx,y‖2 = ∑

x,y

∥∥∥∥∥∥∥∥∥


Gx,y(0,1)
Gx,y(1,0)

...
Gx,y(l,m)


∥∥∥∥∥∥∥∥∥

2

,

where each Gx,y(l,m) is a finite difference defined as follows

Gx,y(l,m) =
X(x,y)−X(x+ l,y+m)√

l2 +m2
.

In our regularizer, we approximate the gradient with finite differences, but weight the var-
ious differences by the inverse Euclidean distances, yielding a rotation invariant approxi-
mation. Secondly we compute local gradient approximations at different scales and weight
gradient approximations at lower levels of hierarchy (i.e. computed with a higher pixel posi-
tion difference) lower. An important insight is that it is essential to compute the norm on all
differences contributing to a local gradient approximation at different scales simultaneously
and not on individual finite differences.

Since the (`2-) norms of all combined gradient vectors in the above sum are positive,
the sum has the effect of a `1-regularization [3] on the entire set of gradient magnitudes:
enforcing sparseness, i.e. drive most gradients to zero and hence smooth the result in
noisy regions, but allow high-frequency detail to prevail. By combining distance-weighted
gradient approximations at different scales we thus implicitly achieve feature preserving
smoothing in a computationally efficient and convex way.

Given the data and regularization terms defined in the previous sections, we can now
formulate the complete LidarBoost energy function as

K

∑
k=1
‖Tk .*Wk .*(Dk−X)‖2 +λ ∑

x,y
‖∇Xx,y‖2 ,

where λ is the trade-off parameter between enforcement of data similarity and smooth-
ness. As one can see in Fig. 5.1g, our approach produces high quality superresolved
geometry which exhibits clear 3D features and only marginal noise in smooth areas.

5.2 Implementation

LidarBoost was implemented in MATLAB. All data conversion as well as image alignment
took place in pure MATLAB. For the optimization problem we build on the cvx modeling
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framework for disciplined convex optimization [11]. This framework transforms the prob-
lem into Second-Order-Cone-Program (SOCP) and solves it using a generic solver. Due
to the size of the transformed problem, which easily exceeded a million variables, we sub-
sequently compute solutions for images patches of 20×20 low-resolution pixels and stitch
the results using two-pixel overlap (similar to primal decomposition with one iteration).
Computation time for the synthetic scenes (9 patches) was about five minutes and for the
real scenes (28 - 48 patches) up to two hours.

Steepest Descent While the use of a modeling framework was important to develop the
algorithm, the processing time using this approach was beyond practical use. Since a
rough estimate of the minimizer of our optimization problem, namely one of the input depth
maps is known, the use of incremental optimization techniques seems to be justified. Here
we shall use one of the simplest algorithms, namely steepest descent. Hence we first
need the gradient, which we derive here. We consider the gradient for the data term and
the regularization term separately, since they are joint by a linear operator). Furthermore,
we assume the optimization variable to be a vector as length n instead of a matrix. This
is valid, since the conversion is a simple stacking of the matrix and we never use any
matrix-specific attribute such as an Eigenvalues.

∇Edata(X) = ∇

N

∑
k=1
‖Wk .*Tk .*(Dk−X)‖2 = (5.1)

=
N

∑
k=1
− 1
‖Wk .*Tk .*(Dk−X)‖2

Wk .*Tk .*(Dk−X) (5.2)

. For the regularization term, we consider first the derivative in a single point, namely at
P(u,v). Then the regularizer for that point reads:

∥∥∥∥∥∥∥∥∥


G(0,1)
G(1,0)

...
G(l,m)


∥∥∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥∥∥∥


X−X(l,0)√

12+02

X−X(0,1)√
02+12

...
X−X(l,m)√

l2+m2



∥∥∥∥∥∥∥∥∥∥∥
2

(5.3)

Hence for that point P(u,v) the gradient vector will be sparse and will have non-zero
elements only for indices X(s, t)|u− l ≤ s ≤ u + l,v−m ≤ t ≤ v + m. Let’s consider the
partial derivative for X(s, t):
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∂

∂X(s, t)

∥∥∥∥∥∥∥∥∥


G(0,1)
G(1,0)

...
G(l,m)


∥∥∥∥∥∥∥∥∥

2

(5.4)

is by the chain rule

∂

∂X(s,t)G(0,1)2 +G(1,0)2 + · · ·+G(l,m)2

2

∥∥∥∥∥∥∥∥∥


G(0,1)
G(1,0)

...
G(l,m)


∥∥∥∥∥∥∥∥∥

2

(5.5)

distinguishing the cases, where (s, t) is the center point, i.e. s = u, t = v and where
surounding pixels are considered:

=



(
1√

02+12
+ 1√

12+02
+···+ 1√

l2+m2

)
X(s,t)∥∥∥∥∥∥∥∥∥∥∥∥


G(0,1)
G(1,0)

...
G(l,m)



∥∥∥∥∥∥∥∥∥∥∥∥
2

s = u, t = v

− 1√
(u−s)2+(v−t)2

X(s,t)∥∥∥∥∥∥∥∥∥∥∥∥


G(0,1)
G(1,0)

...
G(l,m)



∥∥∥∥∥∥∥∥∥∥∥∥
2

else

(5.6)

using the substitution l = u−s and m = v−t. Rearranging this, into matrix form we have

1∥∥∥∥∥∥∥∥∥


G(0,1)

G(1,0)

...
G(l,m)


∥∥∥∥∥∥∥∥∥

2



0 ··· 0

...


· ··· ·
...

(
1√

02+12
+ 1√

12+02
+···+ 1√

l2+m2

)
X(s,t)

...

· ··· − 1√
(u−s)2+(v−t)2

X(s,t)


...

0 ··· 0


(5.7)

We see, this gradient is basically a filter with a local kernel. The kernel itself has some
notable properties. The overall sum of its elements is zero; hence it is an energy preserving
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kernel. The kernel elements are weighted with the inverse distance to the filter center.
Since a Euclidian norm is used (instead i.e. a taxi-cab norm) this makes the filter rotation-
invariant. Furthermore the inverse distance weight attenuates large gradients, i.e. acts as
an edge filter (which in turn of the optimization scheme adds cost to them and will smooth
the result). Furthermore note that the total weight of the filter is furthermore multiplied by
the inverse magnitude of the gradient approximation, hence favors small gradients. Also
we see that most of the filter can be pre-computed, enabling an efficient implementation.

Using this gradient, a steepest-descent implementation is straight forward. We leave the
implementation of a more efficient solver based on this theory for future work

5.3 Results

To explore the capabilities of the new approach, we tested it on synthetic and real se-
quences captured with a Swissranger SR3000 camera (176×144 depth pixel resolution).
We also compared LidarBoost to two alternative approaches from the literature. First we
compare against an image-based superresolution method applied to depth data (IBSR), in
particular we used our previous algorithm. We apply the publicly available implementation
of Farsiu’s approach and choose the following parameters: λ = 0.04,N = 50,α = 0.7,β =
1,P = 5, and a Gaussian 3×3 PSF with standard variance (see original paper for details).
The computation time was below two minutes for all scenes.

Second, on the real scenes only, we compare against color and depth fusion method,
namely the method by Diebel and Thrun [6]. We ran all method with several parameteriza-
tions and show only the best results for each method in the respective scenes.

Synthetic Scene - No Noise Added A first comparison is performed on synthetic im-
ages of the Stanford Graphics Lab’s dragon model created with 3D Studio Max. Synthetic
ground truth depth maps of resolution 400×400 were rendered and downsampled by fac-
tor 8 (using a uniform 8× 8 kernel) to simulate low resolution input depth maps. In total,
N = 10 low resolution input images from slightly displaced viewpoints were created. One
such input depth maps is shown in Fig. 5.1a, compared to the ground truth shown in Fig.
5.1d. Figs. 5.1b and 5.1c show the four times superresolved results computed by applying
IBSR and LidarBoost. Below each depth map, we show renderings of the corresponding
3D geometry (obtained by reprojection into 3D) since depth maps only do not properly
visualize the true gain in quality and tend to mask unwanted artifacts.

Our previous algorithm successfully brings out the outline of certain shape detail that
was not visible in individual input frames, Fig. 5.1f, such as individual toes and sharp
boundaries. However, the results are clearly contaminated by the previously discussed
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(a) Recording Resolu-
tion

(b) IBSR (c) LidarBoost (d) Ground Truth

(e) Recording Resolu-
tion

(f) IBSR (g) LidarBoost (h) Ground Truth

(i) Recording Resolution (j) IBSR (k) LidarBoost (l) Error Color Coding

Figure 5.1: Synthetic test set without noise (4× upsampling): The first row depicts the depth maps,
from which a 3D geometry has been rendered as shown in the second row. The third row shows a
rendering, with color coded rMSE. IBSR recovers the overall structure, but exhibits a noise pattern.
LidarBoost recovers the structure almost perfectly and yields a smooth surface.

staircase pattern (Sect. 5.1). In comparison, LidarBoost (Fig. 5.1g, with λ = 0.04) extracts
more detail (e.g. the eye holes and the third small horn of the dragon) and at the same
time successfully eradicates measurement noise without introducing a disturbing pattern.

On synthetic data we can also perform quantitative comparisons against ground truth
and compute the relative mean square error. It is relative, because the MSE result was
divided by the number of pixels considered to keep numbers reasonable. A two times
downsampled version of a reference 400× 400 depth depth map forms the ground truth
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- to make resolutions match. One low resolution depth map has been upsampled four
times using a nearest neighbor approach to establish a baseline comparison. LidarBoost
clearly outperforms the IBSR method and leads to significant improvements over a single
low-resolution depth map. Figs. 5.1i - 5.1k show a color-coded rendering of the error
distribution (rMSE in percent of longest bounding box dimension of synthetic object) over
the model surface using the color scheme shown in Fig. 5.1l (green=low error, red=large
error). Both methods struggle on edges, which comes to no surprise, as the sub-pixel exact
location for a steep edge is hard to guess. Despite a potentially small mis-localisation,
LidarBoost still recovers depth edges more reliably than the comparison method. Also, the
pattern introduced by IBSR leads to much stronger errors in the interior regions than with
LidarBoost.

Synthetic Scene - Medium Noise Added Depth images are inherently noisy, therefore
the algorithms need to be evaluated on such data. To simulate the effect of measurement
noise introduced by real ToF cameras, we repeated the experiment from the previous
section, but added Gaussian noise with a variance of 0.7 along the measurement ray di-
rections following the sensor characterization proposed by Kim et al. [22]. In the simulated
data, depth values range from 0 to 182. Although in scenes with a larger depth range a
depth-dependency in noise can be expected, for our test scene with limited range we use
a constant variance.

One of the low resolution inputs is depicted in Figure 5.2a, while Figure 5.2b and 5.2c
show the superresolved geometry. Here, the advantage of LidarBoost over IBSR is even
more apparent. Not only is the visual reconstruction quality under these more challenging
circumstances clearly better, but also does the color-coded error rendering Figure 5.2e -
5.2g clearly show the superior reconstruction quality of LidarBoost. This can be seen not
only on the surface, but for details such as the eye hole and the two upper horns.

Synthetic Scene - Stark Noise Added We performed another test on data with even
more noise. Here the added noise had a variance of 5.0. For the stark noise case, in
a single low resolution input frame (Fig. 5.3a) all fine surface detail vanished and it is
even hard to recognize the object’s shape as a whole. While IBSR recovers a decent
level of shape detail (Fig. 5.3b), severe staircasing becomes visible on the geometry and
the result is distorted by the random pattern discussed before. In contrast, in particular
under these extreme conditions, LidarBoost recovers clearly more detail (even traces of
the dragon’s pattern on the back, as well as the dragon’s teeth) and maintains truly smooth
geometry in actually smooth areas. The color-coded error rendering confirms that under
these challenging conditions the advantage of using LidarBoost relative to IBSR is even
stronger, Figs. 5.3i - 5.3k.
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(a) Recording Resolu-
tion

(b) IBSR (c) LidarBoost (d) Ground Truth

(e) Recording Resolu-
tion

(f) IBSR (g) LidarBoost (h) Error Color Coding

Figure 5.2: Synthetic test set with medium noise (Variance of 0.7, 4× upsampling): The first row
shows 3D renderings of one input depth map (a), upsampled results (b),(c), and ground truth
(d). While IBSR improves the resolution, a severe pattern is produced. In contrast, LidarBoost
reproduces the overall geometry much more reliably as a comparison to the ground truth shows.
the color-coded error rendering in the second row also shows quantitatively that LidarBoost yields
more detailed and more accurate surfaces.
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(a) Recording Resolu-
tion

(b) IBSR (c) LidarBoost (d) Ground Truth

(e) Recording Resolu-
tion

(f) IBSR (g) LidarBoost (h) Ground Truth

(i) Recording Resolution (j) IBSR (k) LidarBoost (l) Error Color Coding

Figure 5.3: Synthetic test set with stark noise (Variance of 5.0, 4× upsampling) - First row: ren-
dered 3D geometry in frontal view, LidarBoost shows shows best upsampling result. Middle row:
Also in a lateral view it is apparent that LidarBoost’s reconstruction is closest to ground truth. Bot-
tom row: LidarBoost clearly produces the lowest reconstruction error.
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Synthetic Scenes - Quantitative Comparison Looking at all synthetic test data sets,
the overall trend in rMSE error confirms the visual observations (Table 5.1). In all noise
cases our algorithm performs clearly better than the reference approach and clearly im-
proves over the quality of a single low resolution frame. Overall, with increasing noise the
performance of IBSR worsens more drastically than our method’s results.

No Noise Medium Noise Stark Noise
var = 0 var = 0.7 var = 5

LR 157.6 161.7 203.9
IBSR 83.8 89.9 127.0
LidarBoost 70.6 72.5 82.9

Table 5.1: Relative MSE comparison on synthetic data: LidarBoost throughout outperforms all
other methods and shows less sensitivity towards noise then IBSR

Parameter Selection Both LidarBoost and IBSR use a regularization term with a tunable
trade-off parameter λ . Fig. 5.4 plots λ against the rMSE obtained with both IBSR and Li-
darBoost, as evaluated on the dragon data set with stark noise. The reconstruction quality
of the former shows a strong dependency on λ , and the rMSE is in general much higher
that for LidarBoost. In contrast, the rMSE of LidarBoost is consistently lower and rather
stable. Therefore λ requires less tweaking which renders LidarBoost highly applicable.
The same observation was made for data sets with no noise and stark noise (Figure 5.5).

Real Scene - Collection of Objects Two real scenes were recorded using a Swiss-
ranger SR 3000 depth camera. We recorded N = 15 frames each with 30 ms integration

Figure 5.4: Optimal choice of regularization trade-off parameter λ : For the noisy test sets the
resulting rMSE has been plotted against varying λ . IBSR is sensitive towards λ with a constant
optimum at 0.04. In contrast LidarBoost is robust on a wide range of choices.
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(a) No Noise

(b) Medium Noise

Figure 5.5: Optimal choice of the trade-off parameter λ : Also in the no noise (a) and medium noise
(b) case, one can see that the overall rMSE error of LidarBoost is significantly below the IBSR error.
In addition, the choice of λ is much more critical for IBSR which reduces its applicability.
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(a) Color Image (b) Recording Resolution (c) Amplitude image with cuToFf
area red

(d) IBSR (e) LidarBoost (f) LidarBoost with Confidence
Weighting

(g) Diebel’s MRF

Figure 5.6: Real scene - collection of objects (a): One of several low-resolution depth maps with
an SR3000 ToF cam is shown in (b). IBSR (d) produces an erroneous pattern, whereas LidarBoost
(e) correctly recovers high-frequency detail and smooth geometry. When the reflectivity of the
materials is really low, the low resolution recordings may contain errors (such as in the red areas in
(c)). LidarBoost with activated confidence weighting (f) can correct for such reconstruction errors.
Diebel’s MRF method (g) yields oversmoothing on many depth edges and transforms intensity
patterns into geometry patterns (e.g. checkerboard).

time. The camera was displaced in-between shots using rotation only, where the maxi-
mum displacement from end to end was below 30 pixels for the first and below 15 pixels
for the second scene. The SR 3000 records at 176×144 pixel resolution, but we cropped
the frames in either case to the region of interest, which for the collection of objects scene
(Fig. 5.6a) resulted in a 106× 64 frame size, and for the second scene (Fig. 5.7a) in a
126×89 frame size.

For this scene, the low resolution input (one being shown in Fig. 5.6b) conveys the over-
all geometry, but fine details such as the small holes of the laundry basket and the cup’s
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handle are hard to tell. Also, the occlusion edges are very rough and aliased. Furthermore
smooth surfaces, such as the ball’s or basket’s surface are perturbed by noise.

IBSR’s reconstruction enhances the fine details, but also introduces the previously dis-
cussed staircase pattern. In contrast, LidarBoost (running with λ = 7) also does feature
these details, while yielding a noise free, smooth surface. This result also shows the ef-
fectiveness of our amplitude thresholding approach. Parts of the cardboard are painted in
black, leading to low reflectivity. Fig. 5.6c shows the amplitude image with measurements
below the experimentally determined thresholds being color coded in red. By assigning
such pixels a weight of 0 via Tk, LidarBoost reconstructs the true surface (5.6f) of the box.
Please also note that two stripes of reflective material on the soccer ball caused slight
reconstruction errors since almost no light was reflected to the camera. In this particu-
lar case our confidence weighting could not fill the holes since the tiny area of correctly
capture depth on the rim pulls the final surface slightly inward. Since we also took a pho-
tograph of the real scene, we can also compare to the method by Diebel et al. (Fig. 5.6g)
which yields a smooth reconstruction, but struggles with fine details such as the basket’s
bars, and oversmooths depth edges that don’t coincide with intensity edges. Furthermore
the method erroneously transforms intensity texture into geometric patterns, in particular
in the checkerboard structure on the background and in the pattern on the ball’s surface.

Real Scene - Wedges and Panels The second real scene recorded with the Swiss-
ranger was purposefully designed to contain wedges with thin fine edges, and many sharp
occlusion boundaries (Fig. 5.7a). The same camera settings as in the previous test were
used and N = 15 low resolution frames were captured. This scene nicely demonstrates
the effectiveness of superresolution. While in the low resolution image (Fig. 5.7b), occlu-
sion edges clearly show a staircasing aliasing pattern, both IBSR and LidarBoost recover
sharper edges. However, in our previous algorithm’s result there is still a little bit of jag-
giness around the occlusion edges and, as in previous results, there is a strong aliasing
pattern in regions of smooth geometry (Fig. 5.7c). In contrast, LidarBoost (with λ = 6)
creates crisp edges with no aliasing, and faithfully recovers smooth areas (Fig. 5.7d). In
addition, LidarBoost does a much better job in recovering different depth layers that are
visible through the small holes in the left panel (marked in red in Fig. 5.7d).

Diebel et al.’s method does well in recovering the layers, but in contrast to our method
exhibits problems on several edges. Many edges on the wedges appear rounded or are
still aliased (particularly on the right most wedge).
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(a) Color Image (b) Recording Resolution

(c) IBSR (d) LidarBoost (e) Diebel’s MRF

Figure 5.7: Real scene - wedges and panels (a): This scene with many depth edges (b) demon-
strates the true resolution gain. IBSR (c) demonstrates increased resolution at the edges, but
some aliasing remains and the strong pattern in the interior persists. LidarBoost (d) reconstructs
the edges much more clearly and there is hardly a trace of aliasing, also the depth layers visible in
the red encircled area are better captured. MRF upsampling (e) oversmooths the depth edges and
in some places allows the low resolution aliasing to persist.
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6 Discussion and Future Work

This work showed that the concept of superresolution can indeed be transferred to 3D
data recorded by Time-of-Flight cameras. While the first algorithm proved this is possible
(Chapter 4), our second algorithm Lidarboost tried to exploit the specifics of ToF cameras
to produce even better results (Chapter 5). Both qualitative and quantitative comparisons
demonstrated the gain in resolution as well as overall improved depth data. The core
contribution of this work was to the first to demonstrate superresolution on 3D data and
develop an algorithm tailored to Time-of-Flight cameras.

While all components are at hand to apply these algorithms, especially for Lidarboost
a faster implementation would be advantageous. Since the algorithm was explicitly posed
as a convex problem, this should indeed be possible. A first step is the gradient derived
which can be used to implement a steepest descent or conjugate gradient method. Apart
from favorable convergence properties the computation should be possible with few steps
since an initial estimate in the form of the aligned raw inputs is available.

Also the algorithm offers some interesting areas for improvement. Time-of-Flight cam-
eras over a plentiful of raw data in addition to the depth map. These data is automatically
available and could be included into the algorithm to better characterize noisy pixels as well
as edge pixels (these have a high variance). Possibly the reflectance image could yield
such data but also looking at the different phase images with correlation based cameras
could be of interest.

Another interesting direction of research would be to include a more mathematical model
of the ToF camera errors. It is known that the measurement error is not uniformly dis-
tributed around a measurement point (i.e. a sphere) but rather elliptical along the mea-
surement ray. This seems logical as the the viewing direction is fixed but the distance is
determined by the measurement process. When intersecting the probability distributions
of corresponding points in subsequent recording, the measurement accuracy could be
drastically improved.
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6 Discussion and Future Work

Cm

Figure 6.1: Using superresolution to scan 3D models: the dotted segments are the frame chunks
Cm from which superresolved depth scans are computed.

One of the motivations we mentioned in the introduction was having a method to create
high quality 3D models with a low-cost scanner. Given the improvements superresolu-
tion did towards the quality of Time-of-Flight recordings, the following concept is worth
investigating: the camera is moved around the object of desire (Figure 6.1 while continu-
ously recording. Then chunks of subsequent frames are used to compute a superresolved
recording. If the movement around the object is not too fast (or a sufficiently high frame
rate has been chosen) the underlying assumption of small viewpoint changes needed for
superresolution is still met. The resulting superresolved scans then need to be aligned and
can be fused into a full model of the scanned object. We have outlined this approach in
Figure 6.2.

Super-

resolution

Scan 

Alignment

Raw Depth Data
High Resolution

Depth Data

High Resolution

3D Model

Figure 6.2: Scanning quality 3D models with ToF cameras: superresolution is the key building
block

This setup is on-going research, but initial results look very promising (Figure 6.3). An
antique head (Figure 6.3a was scanned by moving a Swissranger SR3000 camera around
it. The camera was continuously recording scans at approximately 25 f ps. A single raw
scan is shown in Figure 6.3b. Then ten raw frames each were combined into a single
superresolved scan using LidarBoost. These output scans were then aligned using a
novel probabilistic alignment algorithm that incorporates ToF specific error sources. In
Figure 6.3c we depict the result of the algorithm. In 6.3d we show the laser scanned
ground truth. The RMSE comparison with the ground truth (Figure 6.3e) shows the quality
of the reconstruction. This furthermore demonstrates the feasibility of our superresolution
approach under real world conditions.
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(a) Color Image (b) Raw Scan (c) Proposed
Method

(d) Laser Scan (e) Error Plot (f) Color Coding
Legend

Figure 6.3: Scanning 3D models: antique head (a); computes a 3D model of reasonable quality
(c) despite severe errors in the raw ToF data (b). RMSE comparison (e) to a laser scan (d) shows
that no circumstance the error was larger than 2.5 cm, while for most of the surface it was below
1.0 cm. (Note: raw aligned scans, no hole filling done)
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