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In the following, we will review methods that enable advanced user-centric video editing operations
without assuming the availability of a very strong (e.g. shape or appearance) model of the 3D scene
that is recorded. These lightweight methods are not approaches that make no prior assumption
about the structure of videos, but they make a lot weaker assumptions than having a full 3D
reconstruction registered to every video, as we will see later in this part of the talk.
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In the following, we briefly review an important component of many advanced video processing
tasks. For many higher level edits, such as replacing an object in video, spatially relocating an object
in video, or composting regions from different videos in to one, it is important to have a good
segmentation mask of the object. As with many other aspects of video processing that were
discussed in the course before, it is important that this segmentation is temporally coherent. So
naively applying single image-based segmentation approaches to all frames of a video will generally
not serve the purpose, and so dedicated video methods were developed.
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Let’s briefly define the task we want to solve. The goal is to create a mask for a foreground object F,
such as the car here, so that it can be separated from the background of a frame B .

In the simplest case, the problem can be considered as a binary labeling problem where every pixel
in the image is assigned a unique foreground or background label. For many practical applications,
however, binary segmentation is not sufficient. Binary masks tend to lead to unwanted artifacts at
object boundaries, in particular for scenes where parts of the foreground and background are mixed
at a pixel.

Examples are very fine structures of the foreground, such as hair. In order to get a useful
segmentation result in this case, one typically formulates a matting problem. In matting, one solves
for unique foreground and background labels in regions where one is certain to only see one of the
two. In regions where both can mix on a pixel level, such as object boundaries, one defines a so-
called trimap area in which one solves, at every pixel, for the foreground and background
appearance, but also for the mixing of both, described by an alpha value. The resulting soft
segmentation masks are better suited for many applications, such as compositing.
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[Aggarwala et al. 2004]
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There is a large body of prior work on image segmentation and matting [Wang et al. 2007] and
recent works have reached a level of maturity such that they can be integrated into commercial
products. The need for spatio-temporal coherence and stability in video segmentation and matting
makes it a harder problem.

Even though not yet comparable to the scope of image-based works, there is a fair amount of
literature on video segmentation and matting [Varnousfaderani et al. 2013], an extensive review is
beyond the scope of this course, but we review the main categories of approaches. Here are
examples of widely used algorithmic categories:

1) Some methods extends the graph-cut-based image segmentation to video volumes. This means
global optimization of foreground / background labels in video frames is solved. They often
require manual correction of errors in the globally optimized solution.

2) Other approaches combine per image segmentation / matting with propagation of information
over time, e.g. using optical flow.

3) Many methods rely on color-based appearance models and track and move spatially weighted
color models.

4) Another category of methods interpolates boundary curves, such as splines, using a rotoscoping
approach.

While having advanced greatly in recent years, none of these produces satisfactory segmentation or
matting results in all possible cases, in particular not fully-automatically. Often times, manual user
intervention is needed, but not all approaches enable that. Common limitations of global approaches




are scalability problems due to memory limitations, as well as the inability to capture
foreground and background appearance appropriately in a global model. A variety of other
limitations exist that are summarized on the next slide.

Solving the involved optimization problems is also more challenging and often time
consuming in global approaches, which may prevent interactive methods in the first place.
These problems in the single image case are amplified for videos. The problem complexities
are even larger, and since user correction will often be needed to obtain good results,
runtime performance is even more of an issue.
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Most existing video segmentation / matting approaches share several
limitations making them hard to use for non-expert users

* No method produces high quality segmentation / matting automatically

= Many break under certain scene configurations: e.g. strong appearance and
lighting changes, topology changes in regions, stark changes in background etc.

= Global methods have limited scalability due to memory consumption and
runtime — interactive or better real-time performance desirable

* Currently the best choice from a user perspective: interactive approaches with
interactive feedback and the possibility to correct errors

= One such method is reviewed later

2015-08-13 Christian Theobalt — User-Centric Computational Videography 6

This slide lists again some of the main challenges that existing video segmentation and matting
approaches are facing, and explains why, from a user perspective, interactive approaches are a
good choice.
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As stated before, naively applying one of the many image-based segmentation or matting
approaches to each frame of video individually is most likely not going to solve the problem in a

temporally stable way. Specific video segmentation approaches have to live up to this additional
requirement of temporal coherence.
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One way of segmenting or matting the foreground from the background is to engineer the
environment. This is not possible in general scenes, but feasible under controlled studio conditions.

A widely used approach in many studio productions is chroma keying. The idea is to record the
foreground in front of a backdrop of specific color, typically green or blue. With that engineered
background, the foreground can be separated from the background by finding background colored
pixels. Of course, this is only feasible under fully controlled conditions, and also has several failure
conditions in practice. In particular, segmentation may fail if foreground and background colors
overlap. Also, the mono-colored backdrop often leads to unwanted color spill (interrecflection) onto
the foreground.



http://www.fit.hcmus.edu.vn/~phvu/

: Irnpni
BaCkg rou nd Su btractlon max planck institut

informatik

currentframe = Background model
THRESHOLD * Image(s) of unoccluded
T
background
Subtract from frame + threshold

foreground mask

1
N

Methods vary to what extent changes

can be handled

» E.g. simple statistics (Gaussian) — few
changes [Liu et al., 2012]

» Adaptive methods with mixture of

Gaussians [Pham et al. 2010, Zivkovic

et al. 2004/2006]

backg

WWw.opencv.org

2015-08-13 Christian Theobalt — User-Centric Computational Videography 9

Chroma keying is an instance of a slightly more general class of approaches, namely background
subtraction methods. Background subtraction is based on a simple idea: if one can record a clean
background image one can subtract the background from the foreground (on a per-pixel or per patch
level) by thresholding the difference between an image and the backdrop. Existing background
subtraction methods differ in several ways: while simple approaches can only work with static
cameras and no appearance changes in the background, more advanced approaches can handle
more variations, such as slight camera motion or appearance and lighting variation over time.
Simple approaches thus builds simple per pixel statistics of the background, such as a Gaussian
color model [Li et al. 2012]. More advanced methods learn adaptive background statistics using, for
instance, adaptive Gaussian mixture models, e.g. [Pham et al. 2010, Zivkovic et al. 2004/2006].
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The video above shows an example of a multi-view performance capture method that uses as input
a set of multi-view video sequences recorded in a studio. Foreground silhouettes for each camera
view are extracted by means of a background subtraction approach.

10
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Chroma keying in particular, and background subtraction approaches in general are challenged by
the complexity of many real world video sequences. Real world videos often contain very dynamic
and starkly changing backgrounds, exhibit very notable camera motion, and exhibit strong changes
in appearance. These variations are usually not captured very well by the models of foreground and
background used in many of the aforementioned approaches.

11
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In the following slides, we review an example approach from the literature, the Interactive Video
Cutout algorithm by Wang et al., that enables temporally coherent video segmentation and matting
of foreground regions with user interaction. The method is designed in such a way that the involved
computations can be performed efficiently, enabling video segmentation with interactive user
feedback and refinement. It is also applicable to general scenes. In the following, the main steps and
core ideas are briefly reviewed.

As mentioned before, the complexity of video segmentation is amplified by having to solve for
segmentation results in a temporally coherent way. Phrasing video segmentation as a global
problem on the entire video volume (temporal stacking of subsequent video frames into a common
data structure, visualized in figure above) is computationally prohibitive. Therefore, a pre-processing
step in Wang et al.’s method performs a hierarchical oversegmentation.

First, each frame in a video volume is segmented separately based on appearance information, i.e.
pixels are grouped into 2D superpixels — larger coherent image regions of visual similarity.
Subsequently 2D superpixels are clustered into 3D spatio-temporal regions based on spatial
neighborhood and appearance similarity. The oversegmentation is hierarchical and unique, i.e. each
pixel is a member of exactly one 2D region, and each 2D region is a member of exactly one 3D
region. Certain appearance statistics for regions (henceforth also termed segments) are also
computed for later use.

The oversegmentation result can be visualized in a tree (see later slide).

12
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= Paint strokes indicating foreground / background on video volume

[Wang et al., 2005]
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After preprocessing is completed, the user is asked to provide rough scribbles on the video volume
on regions that he considers to be foreground and on regions that he considers to be background.
To this end, a 3D painting interface was designed in which the user can rotate and interact with the
video volume, and provide strokes by painting on the respective spatio-temporal sub-dimensions.

The Video Cutout method now enables the user to alternate between painting of strokes and
computation of a segmentation result. This interactive scheme enables the refinement of a
segmentation from the previous iteration, in case there were errors, by providing additional user
input where it is needed.

13
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= Global segmentation: find label F / B for each segment

= Discrete optimization problem: solve with graph cut [Boykov et al., 2001] 10-15 seconds (640x480)

= Build graph of segments 3D regions

Segments form hierarchy (pixels / 2D regions
/ 3D regions)

Add node to graph for topmost segment in

hierarchy with unique label (either user ©)

defined or unlabeled)
Connect neighboring nodes

@ = Background @ = Foreground = Nodes included in min-cut

[Wang et al., 2005]
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Given the user scribbles, the algorithm proceeds by computing a segmentation on the entire video
volume. This is formulated as a global optimization problem that assigns to each segment in the
video volume a unique foreground (F) or background (B) label. The optimization is performed as a
graph-cut (min-cut) computation [Boykov et al. 2001] on a specifically structured neighborhood
graph.

Let us thus first see how the graph on which the optimization problem is solved is constructed. The
nodes of the graph are segments in the video volume. Remember that from the preprocessing step
there is a hierarchical decomposition of the video volume into segments, where a segment can
either be a pixel (lowest level in the hierarchy tree visualized above), a 2D region (superpixel), or a
3D region. The goal is to decide what segments of the hierarchy are to be added to the graph. From
user strokes, some pixels in the video volume were given foreground (red) or background (blue)
labels, unlabeled pixels are shown in white. The idea is to add to the graph the topmost segments in
the segment hierarchy that have a unique label, i.e. F,B or unlabeled. 2D or 3D regions that have
pixels with differing labels are not to be added.

The graph is then formed from these nodes by connecting spatio-temporally adjacent segments in
the video volume.

14
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* Global segmentation: find label F / B for each segment
* Discrete optimization problem: solve with graph cut [Boykov et al., 2001] 10-15 seconds (640x480)

= Energy function on graph — combines local and global cost
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After we know how the graph is built, let's now define the energy function on the graph whose
minimum defines the desired segmentation, i.e. a foreground (F) or background (B) label for each
node, X.

The energy takes as additional input a color model for each node, Z, as well as the user-assigned
labels from the painted strokes, I'. The first term defines a data term (unary potential) on each node,
and the second term is a pairwise spatial regularizer of the global segmentation result. In the
following, unary and pairwise terms are discussed in more detail.

15
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= Global segmentation: find label F / B for each segment
= Discrete optimization problem: solve with graph cut [Boykov et al., 2001] 10-15 seconds (640x480)
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The data term has 3 components. First, there are two global terms which describe the likelihood that
a segment belongs to the foreground or the background according to a global appearance model of
foreground and background that was learned from the regions with provided scribbles. In the above
slide, the foreground and background likelihoods of segments in one frame of video are exemplarily
visualized (white means high likelihood).

As mentioned earlier, global appearance models are limited in their expressive power as they often
fail to properly represent more localized foreground and background statistics in specific regions.
Therefore, there is an additional local background model. The assumption behind this model is that
the camera is stable or the video was stabilized and thus a hypothesis of a background image can
be extracted by spatio-temporal filtering of the video volume, e.g. a mean filter over time on each
pixel. From this backdrop, local background statistics can be computed and used to compute an
additional background likelihood based on the difference to the local model.

16
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= Global segmentation: find label F / B for each segment
= Discrete optimization problem: solve with graph cut [Boykov et al., 2001] 10-15 seconds (640x480)
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White indicates low cost — i.e. good place to cut a link. The link cost is a regularization term based
on the relationship between adjacent nodes that enforces spatially and temporally coherent
segmentations. The link cost is O if the labels assigned to the neighboring nodes are identical.

As for the data term, the link cost combines evidence from a global and a local term.

The global link cost encodes the following observation: Transitions between foreground and
background will usually exhibit higher gradient than the average gradient between any two pixels.
This global link cost is phrased as a static exponential function of gradient (color difference) between
nodes whose parameters are found from the gradient statistics of the labeled nodes.

In contrast, the local link cost encodes relations based on so-called pixel and link spans: a pixel
span is a set of pixels occurring over time at the same location x/y. A link span is a set of links
connecting neighboring pixel (or node) spans. The local link cost computes the statistic of gradients
in link spans and penalizes strong outliers from that statistics. This shall help to better preserve
natural gradients at the interior of textured foreground / background regions, and to differentiat them
from true foreground background changes.

None of the individual cost terms is perfect by itself, but in tandem they enable to solve for
foreground an background faithfully. The energy is optimized via a min-cut solve on the graph (see
Boykov et al.). The entire step 2 of interactive video cutout can be iterated, i.e. new strokes can be
added and a new segmentation can be solved via graph cut if the previous result was unsatisfactory.

17
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= Discrete F / B solution from step 2 may be noisy at boundaries

= Space-time coherent matting using space-time contour mesh to determine trimap region

Noisy result of step2 ~ Contour mesh in each frame ->linked over time Matting result
[Wang et al., 2005]
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The discrete segmentation solution from the previous step is often noisy at the boundaries.
Therefore, in a last step, a space-time coherent matting algorithm is applied. To this end, a contour
mesh is first fitted to the foreground region in each frame separately, and then the contour curves
are linked temporally (using descriptors of contour points based on shape and color information).
This yields a space-time coherent contour mesh.

Applying image matting approaches separately to every frame of video leads to temporally unstable
results. Therefore, a space-time matting approach is designed. To this end, a trimap area, in which
the alpha value profile between foreground and background needs to be solved, is defined in a 10-
pixel band that extends to either side around the contour curve. In that band, essentially an extended
version of the matting approach from the GrabCut approach of [Rother et al. 2004] is applied, in
which an additional temporal term is added such that one solves for the matting simultaneously
around all contours in the video.

18
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Here are a few results of the approach in action. It enables interactive segmentation of dynamic
regions in a video.

19
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Video SnapCut [Bai et al. 2009] Video Pop-Up [Russel al. 2014]

= Combine evidence of an ensemble of local classifiers = Track long feature trajectories
= Reduces shortcomings of global approaches = Solve labeling problem to segment tracks into objects
= Basis of RotoBrush in Adobe Aftereffects = Non-rigid structure-from-motion to reconstruct 3D

(for certain camera motions) for segments
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Recently, several improved to video segmentation and matting approaches were proposed. This
slides lists two examples.

The Video SnapCut approach [Bai et al. 2009] bypasses certain limitations implied by global
approaches, such as Video Cutout. Global approaches are limited by their use of global background
or foreground statistics, which can often not properly model local appearance effects. Also global
approaches exhibit scalability problems and are not directly applicable for interactive segmentation
of long high resolution video clips.Video SnapCut is based on an ensemble of local classifiers that
work together to segment foreground and background in space-time coherent way. Each classifier
combines evidence from multiple local features, such as color information, edge information, and a
shape prior that is learned on-line.

Another recent strand of work combines ideas from non-rigid structure from motion with video
segmentation. Russel et al. [2014] extract long feature tracks from videos and solve a labeling
problem to segment them into coherent groups that are likely to be coherently moving objects. For
each of the objects, a non-rigid-structure-from-motion approach can be applied that estimates the 3D
geometry of the deforming segment (along with camera geometry), at least under certain types of
relative object —to-camera motion. The end result is a segmentation of moving objects, as well as a
2.5D reconstruction of their shape.

20
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The previous part of the course looked into tools for spatial segmentation of videos into coherent
scene entities. The following part looks into a different type of decomposition based on appearance
criteria, namely the construction of so-called intrinsic videos.
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[images from Bonneel et al., 2014]

Intrinsic decomposition: recovering R and S
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As with several other editing operations discussed before, let us first take a look at the single image
case to define the problem. Intrinsic image decomposition describes the process of decomposing an
image | into two specific (scalar) components of appearance, namely a layer describing the
reflectance in the scene at every pixel R, and a layer describing the illumination or shading in the
scene at every pixel S. Intrinsic decomposition is a problem that has been studied in computer vision
and graphics for many years, and we will, in the following, briefly point to important categories of
intrinsic image decomposition approaches. They differ in the way how they methodically approach
the fundamental ill-posedness of the problem.

Intrinsic video decompaosition, reviewed thereafter, is a computationally even more challenging task,
and, as with previous topics covered in this course, is particularly challenging due to the requirement
of a temporally coherent decomposition of a sequence of frames. The availability of a sequence of
fames may also be advantageous for solving the problem, though, as we will see later.

Side note: The term intrinsic decomposition was coined in the work by Barrow and Tenenbaum
[1978]. In their original paper, they define not only reflectance and shading images as the result of
intrinsic decomposition, but also additional images related to scene structure, such as normal
images, depth images, occluding contour images.

24
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As mentioned on the previous slide, intrinsic decomposition of a single image is an ill-posed problem
as there is only one observation per pixel but two unknowns. A possibly infinite number of per-pixel
decompositions into shading and reflectance may explain the same image |. For instance, even a
trivial splitting of an image into a reflectance image R=Il, and a shading image with all pixel values
set to unity S=1, are a valid intrinsic decomposition, albeit not a very likely one.

Practical decomposition approaches thus make additional assumptions to differentiate plausible
from not plausible decompositions, for instance by enforcing certain priors on shading and
reflectance (see discussion of selected related methods).
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= Intrinsic decomposition assumed greatly simplified material model that only
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Intrinsic decomposition is a very hard problem, despite the fact that the problem is already phrased
under starkly simplifying assumptions about the reality of light transport in a scene, in particular the
reflectance of the visible surfaces. In particular, it is assumed that all surfaces in a scene are diffuse,
which is often a good approximation to reality, but often also a too strong simplification. In the
following slide we take a look at this from the perspective of the rendering / shading equation.
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Let’s briefly take a look at what intrinsic image decomposition means from the perspective of the
light transport at surfaces in a scene in 3D, which is described by the reflectance / rendering
equation [Kajiya'86]. Please note that the above formulation is also already a simplification of light
transport at real surfaces, sub-surface light transport effects are ignored.

This equation describes the outgoing light (radiance) from a point x with normal n towards the
viewer in direction w,, if the point is illuminated with incident light (irradiance) L from all directions Q.
The equation depends on the BRDF (bidirectional reflectance distribution function) of the point
describing its reflectance (in particular, the ratio between outgoing radiance to incoming irradiance at
the point), as well as the visibility function V towards the light source, as well as the cosine of lighting
term.
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Intrinsic image decomposition assumes that all surfaces in a scene have a Lambertian (diffuse)
reflectance. Under the this assumption, the BRDF is a constant and can be factored out of the
integral. An intrinsic image thus decomposes the scene per pixel into the constant BRDF value, i.e.
the diffuse albedo, and the shading value which is the complete integral on the right hand side
evaluated at that pixel.

Obviously, the reflectance of most real-world materials is not purely Lambertian, and also exhibits
more advanced and higher frequency effects, such as specularities, sub-surface lighting effects, etc.
This may lead to artefacts in the decomposition. However, most materials indeed do have a strong
diffuse component in their reflectance, and intrinsic decomposition thus provides a good
approximation to the real appearance of many materials.

28



max planck institut

Intrinsic Decomposition enables o
Illumination-Aware Image Editing

[from Laffont et al. 2012] [from Laffont et al. 2013] [from Laffont et al. 2013]
Relighting by changing shading image Reflectance editing [llumination-aware compositing
Christian Theobalt — User-Centric Computational Videography 29

What is the benefit of an intrinsic frame decomposition from the perspective of image or video
editing? Essentially, given the decomposition of an image into per-pixel reflectance and shading,
one can perform illumination-aware image modifications by modifying the individual layers of the
decomposed image and then recombining the layers to get the modified composite image. The
above images show three such editing examples from related work.

For instance, one can modify the scene illumination by editing the shading layer per pixel and thus
simulate how a scene would look like under a different lighting condition. One can also edit the
reflectance of a scene, and thus create properly lit newly textured surfaces, such as the writing on
the floor in the center image above. One can also simulate a new 3D object being composited into
the scene and approximate its appearance under the scene lighting, if one respects the proper 3D
positioning and camera projection geometry.
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Given an image, intrinsic decomposition computes - per pixel - two scalar unknowns, reflectance
and shading. Usually, this is formulated as some form of energy minimization problem. As stated
before, intrinsic image decomposition is a fundamentally ill-posed problem. Therefore, previous
methods resorted to a variety of additional assumptions in order to guide the decomposition towards
plausible solutions.

Several approaches make prior assumptions about material or lighting statistics which can be used
as priors in intrinsic image decomposition. The Retinex theory by Land and McCann [Land et al.,
1971] inspired many intrinsic decomposition works [Kimmel et al. 2003, Grosse et al., 2009, Shen et
al. 2008]. Under Retinex, small gradients are assumed to correspond to illumination and large
gradients are assumed to correspond to reflectance. The theory is only an approximation to reality
and developed for a Mondrian (piecewise constant) world. It has been combined with several
additional cues to achieve better decompositions, e.g. non-local texture cues [Shen et al. 2008], or
global sparsity priors (Shen et al. 2001, Gehler et al. 2011].

Other approaches aim for more reliable decompositions by try to classifying edges into illumination
edges and reflectance edges [e.g. Sinha et al. 1993, Bell et al. 2001, Tappen et al. 2005, Tappen et
al. 2006]

Intrinsic decomposition is also simplified by considering information not only from one image but
from multiple registered images, for instance images taken under different illumination conditions
[Weiss 2001, Matsushita et al. 2003, Matsushita et al. 2004, Laffont et al. 2013], or images from a
community image collection from which a sparse 3D model is reconstructed via structure-from
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motion. In this case, additional cross-image constraints can be formulated [Laffont et al.
2012].

Recent work also investigated the use of statistical priors on shape, reflectance and
illumination for improved decomposition, e.g. [Barron et al., 2015]. The lack of extensive real
world data sets with proper ground truth annotations of reflectance and shading has also
been identified as a bottleneck hindering innovation. Bell et al. [2014] thus provide a large
data set of real world images for which intrinsic image annotations were created through
crowdsourcing. They also propose a hew intrinsic image decomposition algorithm based on a
conditional random field in which also longer range relationships, such as reflectance
similarities between different parts of the image, can be encoded.

New consumer grade RGBD sensors offer additional possibilities for intrinsic image
decomposition. Some approaches therefore employ per-pixel depth information in addition to
per pixel color information for intrinsic image decomposition, e.g. [Chen et al. 2013, Barron et
al. 2013].

Most decomposition methods for single images or a few images cannot be simply applied to
each frame of video. This would yield temporally incoherent solutions. Therefore, dedicated
video-based decomposition approaches were researched.
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Reflectance layer of [Bell et al. 2014] frame by frame Reflectance layer from video-based approach [Bonneel et al., 2014]
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As with many other types of effects discussed in this course, straightforward application on an
intrinsic image decomposition approach to each frame of video does usually not lead to satisfactory
results. The left video shows an example of applying the approach by Bell et at. [2014] to a video
which leads to temporal artefacts.

Temporal coherence in the result needs to be explicitly considered in the algorithm. This is shown in
the video on the right shows a result with the specially tailored video-based approach by Bonneel et
al. [2014] which leads to a much more stable decomposition.

The field of intrinsic video decomposition is still in its early stage. In the following we will briefly
review the concepts behind the approach of Bonneel et al., and also briefly point to related video-
based methods.

In addition to producing incoherent results, the use of many intrinsic image decomposition
approaches to every frame of a video is computationally prohibitive as results. For even short
sequences would not be obtained at acceptable computation times. The approach by Bonneel et al.
therefore also addresses the performance question; it enables interactive intrinsic video
decomposition with user guidance.
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[Bonneel et al., 2014]
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The approach by Bonneel et al. [2014] also enables space-time coherent and illumination-aware
modification of the appearance of certain scene elements in a video, as shown for the texture on the
wall of this house. To create such a result, correspondences between scene elements need to be
tracked accurately over time which may not be feasible for all types of scenes with complex
dynamics. For certain types of geometry, such as a planar regions, stable tracking is feasible.
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Bonneel et al. formulate intrinsic video decomposition as the minimization of an energy function
whose components we look at on the following slides. It is assumed that the lighting in the scene is
monochromatic. For efficiency, most computations are performed on single channel luminance
images. The image luminance I=(l,l4,l,)*? is defined as the geometric mean of the individual per
pixel RGB components. Similarly, the reflectance R is defined as the geometric mean of the
respective reflectance components. The color reflectance R at pixel x can be computed from R as
R(X)=I(x)/R(X).

Further on, the problem is defined in the log domain which transforms image formation into a sum.
This has the additional advantage that one does not explicitly have to constrain the solutions to be
non-negative (as reflectance and shading should be).

The approach is further formulated in the gradient domain. The idea is to separate image gradients
into reflectance gradients that are assumed to be spatially sparse, and shading gradients that are
supposed to be smooth. In the above formulation, i,s, and r are the log gradients of the image,
reflectance and shading,respectively. The first term in the energy is thus a least-squares data term
that follows from the image formation model.
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This least squares data term alone is ambiguous since only i is known, and both s and r are
unknown. Therefore, additional prior terms on s and r are added to the energy.

First, it is assumed that illumination (shading) exhibits smooth variations, for instance due to
illumination on smooth surfaces or soft shadows (see Retinex theory [Land et al. 1971]). This is
modeled with an L2-term on the shading gradients s.
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Second, it is assumed that reflectance values are sparse [Omer et al. 2004, Hsu et al. 2008], i.e. that
scenes are mostly made of objects with constant colors separated by hard boundaries. This is
modelled using an Lp norm on the reflectance gradients with p<2. Low p values enforce very sparse
reflectance gradients over the image (In the above energy function, the dependencies on the pixel
positions are dropped for better readability, but s and r are solved for at every pixel).

The energy function developed on the previous slides requires an efficient minimization of a mixed
L2-Lp norm energy. Usually, such mixed norm energies are optimized with expensive combinatorial
approaches.

In contrast, in this particular case much higher computational efficiency can be achieved by using a
look-up table within an iterative reweighthed least squares approach that replace the Lp term with a
reweighted L2 term. This yields an iterative update for the reflectance estimate as described above.
The details of this proposed minimization algorithm are discussed in the paper by Bonneel et al.
[2014].
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= Few different reflectances [Garces et al. 2012...]

— Non-local constraints in Poisson solver

Original — non-local Without non-local constraints With non-local constraints
similarities found
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The solutions obtained with the previous L2-Lp optimization may exhibit low frequency
reconstruction errors. In previous work, this problem has been approached by enforcing non-local
reflectance constraints, for instance by stating that pixels with similar chrominance should have
similar reflectance, e.g. [Shen et al. 2011]. Introducing these non-local constraints leads to dense
linear systems and lower computational performance.

To maintain computational efficiency, Bonneel et al. introduce non-local constraints by clustering
chrominance into k clusters and enforcing reflectance similarity at each pixel to a sparse set of
nearby representative pixels from each cluster that is similar in chrominance.
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Original — user Reflectance With user scribbles
scribbles added with non-local constraints
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Previous work in intrinsic image decomposition has shown the benefit of constraints from user
guidance in resolving decomposition ambiguities [Bousseau et al. 2009].

This video-based approach thus enables the user to provide guidance to the algorithm by means of
strokes in order to enable more reliable decomposition. Specifically, two types of strokes can be
provided, namely strokes indicating regions of constant reflectance and regions of constant shading.
User strokes applied to individual frames are automatically propagated forward in time.
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This result video shows a decomposition of the video on the left into reflectance and shading videos.
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This video shows an example of reflectance editing over an entire video. In these results, the
reflectance image was painted over in one frame and the modified reflectance was then propagated
to the subsequent frames by means of optical flow.

39



Ifnpni
Resu Its max planck institut

informatik

Naive composite lllumination-aware composite

[Bonneel et al., 2014]
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The video on the left shows a composite in which a segmented region from one video is simply
pasted over another video without any illumination adjustment. The video on the right shows an
example of lighting consistent video compositing with the approach by Bonneel et al. If S1 and S2
are the shading layers of the videos to be composited, the shading layer in the composited results
was set to min(S1,S2) for the segmented foreground region.

The approach by Bonneel is a step ahead in intrinsic video decomposition, but is still subject to
several imitations:

-Since the method assumes monochromatic lighting, the presence of colored lighting or strongly
colored interreflections will lead to artefacts in the decomposition.

-For most results shown in their video, around 20 minutes of user interaction was required. The per
frame computation times are in the range of 0.2-1.3 seconds for videos of up to 1280x960 resolution;
this performance is sufficient for short term edits but may be unsuitable for more complex
modification of longer videos where visual feedback may not be computed fast enough.

-Many of the implicitly made assumptions, such as smoothly varying illumination, are violated in real
video sequences with high frequency illumination effects, such as hard cast shadows or high
frequency geometry; this often leads to erroneous high frequency residuals in reflectance.

-Further on, many limitations of existing approaches are due to the underlying appearance model.
Artefacts can be expected around non-diffuse surfaces, and materials with notable sub-surface light
transport effects.
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Propagation of initial intrinsic decomposition on first frame Space-time decomposition using optic flow +
statistical priors
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The research on intrinsic video decomposition is still at an early stage. The following works are other
examples of recently proposed intrinsic video decomposition approaches, and we briefly look at their
core ideas.

The core idea behind the approach presented [Ye et al. 2014] is to compute an intrinsic
decomposition on an initial frame and propagate it as good as possible over time. Propagating per-
pixel reflectance over time is phrased as a relaxed statistical propagation approach based on a
Bayesian framework that finds a Maximum-a-Posteriori (MAP) solution. To avoid accumulation of
errors over time, a local confidence threshold is defined and propagation is stopped when the
number of unreliable pixels surpasses it. The shading is then leveraged to complete the reflectance
layer at the stopping frame, and then information is propagated backwards. This process is iterated
in a coarse-to-fine way. The approach also allows for user-guidance with scribbles. Despite
appealing decomposition results, the reported computational performance of around 1 minute per
frame on a video of 800x600 pixel resolution makes it less suitable for interactive editing
applications.

The method described in [Kong et al.,, 2014] computes reflectance and shading by solving an
optimization problem with temporal regularization using optical flow correspondences. A spatial prior
on shading is also proposed that is inspired by regularization terms used in previous optical flow
approaches. Additionally, some statistical priors on shading are used as proposed by Barron et al.
[2015].

Intrinsic video decomposition methods are still at an early stage and many challenges remain
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unresolved — the high computational complexity makes many approaches computationally
prohibitive, and the simplifying assumptions on scene reflectance will need to be relaxed in
order to obtain good results on more general scenes.
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In the following, we will look into another video editing operation that is often required in conjunction
with other edits, such as removal of an object from video, namely video inpainting.
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Input Mask of foreground Inpainted result:
object to be removed Hole in image plausibly
filled

[Images from Criminisi et al. 2004]
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Before looking into video inpainting algorithms, let us look again into the related domain of image
inpainting to define the problem. In image inpainting, the goal is to algorithmically fill in a designated
image region with plausible content such that the edit is visually imperceptible. A typical use case for
this technique is the filling of a hole after removal of a certain pixel region, as shown in the example
above. A variety of image-based algorithms to solve this problem have been proposed in the past,
and in the following we will look into important categories. Many of their core ideas have inspired
subsequent work on video inpainting.
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In the past, computer vision and computer graphics researchers have proposed a variety of
approaches to inpaint holes in a single image. In the following, we list example works from important
categories of approaches; an exhaustive review of works in this specific domain is beyond the scope
of the course.

Several methods are inspired by the concept of texture synthesis. Essentially, the idea is to create
new patches to be filled into the how from “exemplar” patches in the surrounding areas of the image
[e.g. Efros et al. 2001, Heeger et al. 1995, Igehy et al. 1997, Yamauchi et la. 2003]. Algorithms differ
in the way how they preserve continuity between pixels filled into the hole and original image pixels,
as well as what additional transformations on patches (e.g. appearance) are considered and
allowed. Exemplar-based approaches typically require an expensive search step to find most similar
/ suitable patches in other image regions for hole completion.

The shift map algorithm by Pritch et al. is an example from that category. It can be used for a variety
of image editing tasks, and for inpaiting it optimizes a vector field of displacements for pixel in the
howl that indicates from where content should be copied. Several video inpainting approaches are
inspired by it. Searching for most similar pixels / patches is a computationally expensive operation.
The PatchMatch approach by Barnes et al. [2009] proposes a highly effective randomized search
method for nearest neighbor patches, and it can be used in several image editing tasks, including
hole filling.

Structural inpainting approaches combine the benefits of texture synthesis approaches with the
explicit propagation of structural elements seen in the surroundings of a hole to inside the hole [e.qg.
Bertalmio et al. 2000, Elad et al. 2005, Fang et al. 2009]. For instance, Criminisi et al. [2004]
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combine exemplar-based synthesis with isophote propagation into the hole, and patch-based
inpaiting around user-specified structures is presented in [Sun et al. 2005]. An exemplar-
based approach that exploits community photo collections as database and local context
similarity is presented in [Hayes et al., 2007].

Another category of approaches models image inpainting as a diffusion process that
propagates information from the surroundings into the hole [e.g. Bertalmio et al. 2000,
Oliveira et al. 2001]. The final solution is found by solving a partial differential equation [e.g.
Tschumperle et al. 2005]. Bertalmio et al. [2001] propose a PDE-based method inspired by
fluid dynamics. The effective combination of texture synthesis and diffusion has also been
investigated [Bugeau et al. 2009].

As with several previously studied effects, naively applying image inpainting approaches to
every frame of video will usually not lead to satisfactory results. The inpainted frames will not
be temporally coherent. Therefore, specific video inpainting approaches were designed. The
video inpainting problem is further complicated by the dynamics of video — while inpainting a
static background region in

a video filmed with a static camera is most similar in setting to image inpaiting, in video one
may need to inpaint dynamic region sin the background, and the camera may in addition
move from frame to frame. This severely complicates the search for space-time coherent
content to be inserted into the hole.
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Often times, one would like to remove an object from video, for instance because during video
recording a dynamic foreground object may have erroneously occluded the action which one
actually wanted to capture. An example of this is shown in the video above, where some persons in
the foreground erroneously occluded the band in the background. A video inpainting approach
would need to fill in the dynamic background, after the people in the foreground where removed.
The video shows the result created automatically by the video inpainting approach of Granados et
al. [2012]. Please note that the particular difficulty here is that the dynamic background needs to be
inpainted.

In addition to cases where the actual goal is to remove objects from a video, the need to inpaint
holes in the background may arise in conjunction with other video edits, such as the spatio-temporal
relocalization of an object, the change of motion of the object, or the change of appearance of
certain elements of the video; we will see further examples of this in the later part of the course on
model-based video editing.

In the following, we will briefly define the video inpainting problem, identify its main challenges, and
discuss in more detail the solution proposed in the paper by Granados et al. from EUROGRAPHICS
2012 as one example of a recent video inpaiting approach.

Video link: http://gvv.mpi-inf.mpg.de/projects/vidinp/
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In order to define the video inpainting problem, identify its main challenges, and in order to see what
specific scenario the approach by Granados et al. [EG 2012] takes, let’'s have a look at the following
video. In this video, the two persons walk in opposite directions, and we see that one occludes the
other at some point.

As stated before, a typical case where video inpainting is needed is if one wants to remove one of
the persons from the video. To remove the person in the back, with the white shirt, is comparably
easy since it covers just the static background. In that case one can find the content to inpaint into
the background in other frames showing the same unoccluded X/Y region. In particular if the camera
is not moving, this is relatively straightforward. In such a case, applying a filter to all the pixel values
over time (e.g. median filter) often already produces a very satisfactory background inpainting result.

It would be more difficult to remove the person in front, because he covers the moving person
behind, and that missing region that needs to be inpainted is dynamic, and thus much more
challenging to restore.

Video link: http://gvv.mpi-inf.mpg.de/projects/vidinp/
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This is a visualization of the same video as a video volume. In this volume, the frames are stacked
one after the other in the order they appear in the video. In this figure, we don't show the background

for better visualization.
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This region in red is what the user wants us to remove.
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This means that one has to restore the scene content occluded by this person. The easier case is
inpainting all those parts of the video where the person only occludes static background. In that case
one can find the content to inpaint into the background in other frames showing the same
unoccluded X/Y region. In particular if the camera is not moving, this is relatively straightforward,
since corresponding regions over time stay at the same X/Y location. In such a case, applying a filter
to all the pixel values over time (e.g. median filter) often already produces a very satisfactory

background inpainting result.
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The harder case is inpainting those regions where the other person was covered. The problem is
that the region was not static during the occlusion. To restore this moving background is much more
difficult. It is not enough to search for other (spatio-)temporal locations in the video where the person
was visible, one also needs to find and transfer these regions in such a way that the dynamics of the
scene in the target region is plausibly reproduced.

The problem can be slightly simplified if one assumes a parametric model of the occluded region,
e.g. one assumes there is a moving person and thus models the motion in the region to be inpainted
with some human template (see discussion of alternative video inpaiting methods at the end of this
section). However, this also limits the generality of the approach. The approach by Granados et al.
[EG 2012] does not use such higher-level shape or motion priors and is purely based on searching
similar space-time regions in unoccluded regions of the video volume, as we will explain later.

53



Irnpni
Pro blem Statement max planck institut

informatik

= Remove objects from video
Reconstruct background
Reconstruct moving objects

Visually plausible

= Assumptions
Static camera
Mask given y

Dynamic objects

How Not to be Seen — [Granados et el., EUROGRAPHICS 2012]

2015-08-13 Christian Theobalt — User-Centric Computational Videography 54

To summarize, if one removes an object from video, one needs to reconstruct the scene behind,
including the background and all moving objects, in a visually plausible way. In order to solve this
problem, the method by Granados et al. [EG 2012] makes a few assumptions: It is assumed that the
camera is static, and it is assumed that a mask for the object to be removed is given (e.g. using
video segmentation approaches discussed earlier in this course). Further on, the algorithm
approaches the general case where the region to be removed and the background to be inpainted
can be non-static.
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The main challenges are that:

1) The method needs to handle general scenes, where one does not have a model of the scene that
could be use to predict the missing data.

2) Also, the missing motion is of course unknown, and one cannot assume that, for instance, it will
always be cyclic.

3) And, for being practically useful the algorithm needs to work with high resolution videos, so
algorithmic complexity is an issue and computation times need to stay in reasonable bounds.

4) Despite all these challenges, of course, producing visually plausible results is always the ultimate
goal.
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Before we look into the details of the approach by Granados et al., let us first look into some related
work on video inpainting. Model-based methods for video inpaiting assume that the behavior of the
occluded objects can be somehow modelled, for instance by a shape template or a parametric
motion model.

Many approaches thus build and adapt a model for the object, train it with the input video, and then
try to predict how the occluded part looks like by using the parametric model. For instance,
Venkatesh et al. [2009] track and segment the occluded object. They construct a database of
segmented frames where the occluded object is fully visible. Using dynamic programming, the holes
are completed by aligning frames in the database to the partially or fully-occluded frames in the hole.

This idea is extended by Ling et al. [2009]. The contours of the object of interest are estimated by
using motion information. The contours are then used to retrieve the object frames from a database
of unoccluded views, even under some restricted posture change.

Jia et al. [2006] assume a periodic motion for the occluded objects. After segmenting them, the
completion problem is cast as a warping and alignment of the object’s visible trajectory with that of
its occluded views.

Object-based systems demonstrate plausible completions for certain categories of moving objects,
especially humans. However, they either impose an explicit class of possible motions (e.g., cyclic)
[Venkatesh et al. 2009, Jia et al. 2006], or require the motion to be simple such that a dense
sampling of postures is feasible [Ling et al. 2009].
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A widely used category of video inpainting methods are non-parametric methods. These methods do
not make any strong prior assumptions about the scene or its motion, only that there is enough
redundancy so that the missing data can be reconstructed from other parts of the video.

One can further categorize two main classes of non-parametric approaches. The first type of
approach completes holes in a video by formulating the problem as an energy minimization problem
that is solved globally on the entire hole. Usually, the energy functional enforces similarity between
the content of the hole and its surrounding regions (spatially and temporally), as well as coherence
criteria for the content filled into the hole. The optimal solution thus describes which content to take
from where in the video volume such that these consistency criteria are met.

An example for such a global approach is the method by Wexler et al. [2007]. A spatio-temporal
patch is sampled from every observed pixel n the input video. The collection of these patches
constitutes a database reflecting the statistics of the video. Completion is performed by greedily
assigning to each missing pixel the most likely color among those patches from the database that
are closest to the current solution. The joint configuration of these assignments minimizes a
predefined energy functional based on the (dis-)agreement of overlapping patches. The method of
Shen et al. [2006] tries to retain the advantages of global approaches while reducing computational
complexity. They track every pixel in the occluded object through the video such that during the
energy minimization stage the search space for each pixel is reduced.

Some methods take inspiration from the shift map method for images [Pritch et al. 2007]. This
method produces a vector field or shift-map that assigns an offset to every pixel such that the
resulting field minimizes a task-dependent energy functional. For image completion, the offsets point
to pixels outside the hole from which colors should be copied. An MRF is then optimized that
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minimizes the discrepancy between the (original) neighborhoods of adjacent pixels. Hu et al.
[2010] apply the concept of shift-maps to the video domain. For video retargeting, they obtain
a coherent mapping from the original video to a domain of different resolution by maximizing
temporal consistency in addition to spatial consistency. Offsets along the time axis are not
allowed nor required during the retargeting. However, completing video parts by simply
extending shift maps to allow temporal offsets can produce spurious artifacts since, in
general, spatial and temporal dimensions have different characteristics. The latter is explicitly
considered in the approach by Granados et al. [2012].

The second main class of approaches formulates inpainting as an optimization problem to be
solved locally (in space-time) [Jia et al. 2005]. Patwardhan et al. [2007,2009] propose a local
approach. They assign a priority to every hole pixel based on the local amount of undamaged
pixels and on the presence of structure at the current hole boundary. While this algorithm
enables fast completion, in general the results are not guaranteed to be globally coherent.

In Shih et al. [2009], this work is extended to handle general camera motions and remove
temporal discontinuities. A more indirect approach is motion transfer which derives a motion
field for the hole by gradually propagating motion vectors [Matsushita et al. 2006], or by using
motion patch similarities [Shiratori et al. 2006]. The motion field is used to propagate pixel
values from outside the hole into the missing region. These approaches allow completion
only over a relatively small number of frames.

As mentioned earlier, applying PDE-based per frame inpainting to fill holes of short duration
has
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In the following, we explain the algorithmic core of the video inpainting approach by Granados et al.
[EG 2012]. In order to do this, let us take a front view of the video volume. the person we want to

remove is encircled in red here.

We assume that there is a high degree of redundancy in videos, which means that every missing
pixel can be filled using some other pixel somewhere else in the video. Pixels in the missing region
that are close by are also likely to be replaced with source pixels outside the hole that are also close.

Instead of computing absolute pixel locations, we compute offsets, so that adjacent pixels can have
the same offset. This offset field is known as a “correspondence map” or a “shift map”, and has

previously been used for image inpainting [Pritch et al. 2009].
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However, finding a single large region to fill each hole restricts the quality of the final inpainting, as
the filled video content needs to be plausible in each frame but also coherent over time. A better
approach is to fill the hole with smaller pieces of the video, like in a 3D jigsaw puzzle, where we cut
pieces from everywhere in the video, no matter what size or shape they have. The only restriction is
that the boundary of each piece has to match those of all the adjacent pieces.

Formulating the problem in such a way is a compromise. ldeally one wants to “shift” as large as
possible regions of the original video into the hole, as they are more likely to be spatially coherent.
However, too large regions are too inflexible and do not allow to reproduce the dynamics of the
inpainted region to be reproduced in a spatially and temporally coherent way.




max planck institut

Energy Functional — Granados et al. EG 2012 informatik

2015-08-13 Christian Iheobalt — User-Centric Computational Videography 60

The criteria and ideas which were explained graphically on the two previous slides are encoded
mathematically as an energy functional that is minimized. The solution is a shift map displacement
field M which, for each pixel in the hole in the video volume, points to the video volume coordinate
(in the unoccluded region) from where its content is to be taken.

From a high level, the energy function encodes consistency in a very simple way. Whenever two
pixels p, g have different offsets, it is encouraged that the corresponding sources have similar local
appearance. This is done by penalizing the color and gradient differences between corresponding
pixels on the two sources. We solve this discrete energy minimization problem (discrete offsets) of
an MRF (Markov random field) using graph cuts, and by design, the optimization guarantees
solutions that are close to the optimal solution.

See the next slide and the original paper of Granados et al. for the specifics of the energy, as well as
the explanation of the latter statement about optimality.
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This slide shows the energy function that is optimized in a bit more detail. A comprehensive
explanation of each term, and the algorithmic validation of each term’s relevance is shown in the

original paper manuscript.
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This slide summarizes the main features of the approach by Granados et al.

-It exploits redundancy in videos, and this does not mean assuming cyclic motions.

-It compute a vector field that represent offsets from missing pixels to visible regions.

-It defines the vector field as the minimum of an energy functional, and optimize it using graph cuts.

-It produce coherent results, because coherence is encoded in the functional, as shown in the
previous slide
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Scalability is an important issue that is explicitly addressed. The complexity of Granados’ algorithm
is O(n"3*m), n is the number of missing pixels, and m is the number of possible offsets. In practice, if
one would run this method on high resolution video for a large hole, there would be way too many
possible offsets for the computation to be finished. For instance, for 10 seconds of Full HD video at
25fps we have around 4.1x1079 possible offsets, and say that the hole is just 100x100 pixels for 10
frames, this is 100.000 missing pixels.

In order to run the method on HD video, one needs to reduce both the size of the hole and the
number of offsets as much as possible. To this end, the algorithm relies on three strategies:

1. The static background is inpainted separately, so one can locally concentrate on the more difficult
dynamic occlusions.

2. For those dynamic occlusions, the algorithm relies on help from the user to track the relevant
region (see next slide).

3. The algorithm performs a hierarchical optimization on a pyramid representation: it computes a
solution considering all offsets in coarser resolution, and then refines the solution with only local
adjustments in finer resolutions.

63



Background Inpainting

1 Background inpainting

3 RS =

B -

H

- .z ‘:.J”""”'ﬂ‘g—gu

2015-08-13 Christian Theobalt — User-Centric Computational Videography

max planck institut
informatik

64

So first we inpaint the part of the scene that is background. Here we can see that since the camera
is static, so we only need to consider offsets along the temporal axis, because what we need to copy
is located in the same point in space, but on a different frame. This reduces the possible offsets to

just twice the number of frames, so the optimization is feasible.

Here we can see that the background estimation is good, but the part where they cross is no yet
correct, because the offsets to the right locations were not available to the optimizer at this stage.
For making this dynamic part feasible without having to consider all possible locations of the video

volume as possible sources of a shift, we use some help from the user.

Video link: http://gvv.mpi-inf.mpg.de/projects/vidinp/
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Video link: http://gvv.mpi-inf.mpg.de/projects/vidinp/
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This is the result for the previously shown sequence with the background and dynamic inpainting
together. If you notice a fly crossing right after the occlusion, that's not an artifact, that's just nature.
The runtime for this sequence is 40h (on a Xeon X5560 CPU). This is a long runtime but we have to
consider that this might be the closest we can get to an optimal solution, if we follow the non-
parametric framework with less restrictions on scene type, and this is part of what we wanted to test,
to see how far this framework can be pushed. There are ample possibilities to further speed-up the
computation of the solution. Also, since the current state of the art to fulfill such a task in practical
movie productions is to perform such inpainting tasks manually on each frame, even this long
runtime is competitive.

Video link: http://gvv.mpi-inf.mpg.de/projects/vidinp/
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This is a visualization of the vector field (shift map field) that is computed. It shows just the index of
the source frame for every missing pixel. So different colors mean different sources.

Video link: http://gvv.mpi-inf.mpg.de/projects/vidinp/
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In cases where the algorithm does not produce the result the user wants, like in this toy example, the
user can correct small mistakes, interactively: To this end, the user selects the region to repair, and
the desired sources, and the algorithm quickly computes an inpainting using only those sources. We
think it's important to provide this option to the user, but all the other results were computed without
user refinement.

Video link: http://gvv.mpi-inf.mpg.de/projects/vidinp/
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In this sequence, a person that walks in front of several other people with different types of motions
was removed. The occlusions of each of these moving persons were inpainted with our method.
This kind of diversity in the type of motions and the appearance in inpainted regions wouldn't be
possible with a model-based method. The tracking information provided by the user is also shown,
along with the resulting inpainting.

The overall result is very plausible, but close inspection will reveal some remaining artifacts. This
can happen in to-be-inpainted parts where the missing data is not available elsewhere in the video,
for example, when the person in white is walking towards the camera and raising his hand. The
method isn't scale invariant, because that would increase the search space quite a lot, so these type
of motions are challenging for the method in its current form.

Video link: http://gvv.mpi-inf.mpg.de/projects/vidinp/
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This is a comparison with the method of Wexler et al. As discussed before, they minimize a global
energy function, but they use a local optimizer so it can easily get stuck in local minima. This can
lead to a wrong inpainting, like the one in the middle, we can't know if is a problem of the energy
functional or of the initialization. By design, our optimizer produces solutions within a constant factor
of the global minima.

Video link: http://gvv.mpi-inf. mpg.de/projects/vidinp/
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In this other sequence, a person was removed that is walking over a reflective floor while occluding
other people. Overall, the inpainting result is very plausible and several occluded moving persons in
the background are correctly inpainted. Some artifacts are visible again in regions where the
redundancy assumption is not well satisfied, like when the person on the right with the red bag is
walking away from the camera. Artists can use these results directly, or use them as a starting point
and optionally remove only some remaining artefacts manually, rather than filling in the entire hole
manually as it is often done in practice.

Video link: http://gvv.mpi-inf.mpg.de/projects/vidinp/
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The approach by Granados was a big step ahead over the state-of-the-art in video inpainting. It can
be applied for video inpainting on a large range of scenes to which many previous methods were
not applicable. It still exhibits several limitations:

-It's designed for static cameras.

-It requires that the video contains enough redundancy so the missing parts can be reconstructed
from other bits in the video volume. This is difficult when there are unique motions never seen
elsewhere in the video during the occlusion, or when there is motion blur or reflective surfaces
where the background and foreground are difficult to separate.

-The computational complexity is high, so we can't handle scale changes, but we can use some user
interaction to reduce the runtime.
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Some more recently published approaches aim to overcome some of these remaining limitations.

In follow-up work, Granados et al. [ECCV 2012] proposed an approach to inpaint the static
background only (so no inpainting of moving background objects) in video filmed with a moving
camera which would not have been possible with the approach described earlier. To solve this
problem, they make a weak assumption about scene geometry, namely that it can be well
represented by a set of homographies. This corresponds to assuming that the scene is composed
of piecewise planar regions. Based on this homography assumption, all frames are pairwise aligned.
After alignment, the hole can be filled from the registered frames by solving an MRF-based energy
minimization problem where the best consistent pixels from the aligned frames to be filled into the
hole can be found through graph cut optimization. The method produces very plausible inpainting
results, only slight temporal artefacts are visible in some of the frames. However, it cannot yet
inpaint dynamic background regions in video filmed with a moving camera.

http://gvv.mpi-inf.mpg.de/projects/vidinp/
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One of the main bottlenecks of the approach by Granados et al. [EG 2012] was the quite high
computation times of sometimes even several tens of hours for larger holes in high-resolution
sequences. Also, the approach relied on some user guidance. To improve computational
performance, Newson et al. [2013] proposed an extension of the method by Wexler et al. [2007].
They improve that baseline approach in two ways. First, the time consuming approximate nearest
neighbor patch search in the video volume of Wexler et al. is replaced by the PatchMatch
randomized patch search algorithm from Barnes et al. [2007]. This leads to a significant speed-up
compared to Wexler et al.’s baseline method, but also compared to the approach of Granados et al.
Second, Newson et al. improve the patch averaging scheme(s) of Wexler et al. which often caused
oversmoothing of the result.
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Another approach for video processing based on weak scene model assumptions is shown at
SIGGRAPH 2015. The approach is called scene space video processing. The intuition is to align
scene samples (so-to-say pixels plus depth) from several frames with a current frame using
reconstructed depth and camera calibration information (obtained with off-the-shelf
tracking/Structure-from-motion). In a target frame on can inpaint the disoccluded region behind an
object by rendering information from the aligned more distant samples of the scene. However, other
effects are also possible with this approach.
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The approaches reviewed so-far used comparably “lightweight” models of the space-time
relationships in videos (e.g. spatial or temporal similarity relations between regions of a video
volume) to enable advanced video edits. In the following, we discuss approaches that rely on the
availability of much stronger models, for instance more detailed 3D shape, motion and appearance
models registered to every frame of video. While this often restricts their use to certain types of
scenes, very advanced edits are feasible under these conditions.
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Model-based video editing approaches benefit from converging strands of research in both computer
vision and computer graphics. Ever more advanced marker-less algorithms are developed to
capture detailed models of shape, motion and geometry of human actors from video recordings.
Dynamic scene reconstructions with the best quality are obtained with so-called performance
capture approaches that usually require the scene to be capture from multiple camera views in a
controlled studio, see above results from de Aguiar et al. [2008] and Li et al. [2013] as an example.
Reviewing performance capture methods extensively is beyond the scope of this course, but in the
following, we provide a comprehensive list of references in case the reviewer is interested to read up
in more detail.

As stated above, many approaches achieve high quality dynamic shape reconstructions by resorting
to multi-camera video footage under controlled settings [de Aguiar et al. 2008, Tung et al. 2008,
Casas et al. 2014, Pons-Moll et al. 2015, Bradley et al. 08, Beeler et al. 2011, Vlasic et al. 08, Balan
et al. 2008, Cagniart et al. 2010, Collet et al. 2015, Vlasic et al. 2009]. For dynamic scene
reconstruction, approaches resort to a variety of algorithmic strategies, including reconstruction
using templates or statistical shape models [e.g. de Aguiar et al. 2008, Vlasic et al. 2008 etc.],
variants of shape-from-silhouette [e.g. Cagniart et al. 2010], variants of multi-view stereo [e.g. Beeler
et al. 2011], or variants of photometric stereo [e.g. Vlasic et al. 2009]. In some cases, this makes it
necessary that scenes are recorded under a complex controllable lighting setup. See also the
following course notes, book chapters and books for more extended reviews on the topic [Theobalt
et al. 2007, Theobalt et al. 2008, Theobalt et al. 201, Magnor et al. 2015].

The aforementioned performance capture approaches produce results of high quality, but he strong
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requirements regarding the acquisition system make them unsuitable for model-based single
video editing.
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Model-based video editing approaches benefit from converging strands of research in both computer
vision and computer graphics. Ever more advanced marker-less algorithms are developed to
capture detailed models of shape, motion and geometry of human actors from video recordings.
Dynamic scene reconstructions with the best quality are obtained with so-called performance
capture approaches that usually require the scene to be capture from multiple camera views in a
controlled studio, see above results from de Aguiar et al. [2008] and Li et al. [2013] as an example.
Reviewing performance capture methods extensively is beyond the scope of this course, but in the
following, we provide a comprehensive list of references in case the reviewer is interested to read up
in more detail.

As stated above, many approaches achieve high quality dynamic shape reconstructions by resorting
to multi-camera video footage under controlled settings [de Aguiar et al. 2008, Tung et al. 2008,
Casas et al. 2014, Pons-Moll et al. 2015, Bradley et al. 08, Beeler et al. 2011, Vlasic et al. 08, Balan
et al. 2008, Cagniart et al. 2010, Collet et al. 2015, Vlasic et al. 2009]. For dynamic scene
reconstruction, approaches resort to a variety of algorithmic strategies, including reconstruction
using templates or statistical shape models [e.g. de Aguiar et al. 2008, Vlasic et al. 2008 etc.],
variants of shape-from-silhouette [e.g. Cagniart et al. 2010], variants of multi-view stereo [e.g. Beeler
et al. 2011], or variants of photometric stereo [e.g. Vlasic et al. 2009]. In some cases, this makes it
necessary that scenes are recorded under a complex controllable lighting setup. See also the
following course notes, book chapters and books for more extended reviews on the topic [Theobalt
et al. 2007, Theobalt et al. 2008, Theobalt et al. 201, Magnor et al. 2015].

The aforementioned performance capture approaches produce results of high quality, but he strong




requirements regarding the acquisition system make them unsuitable for model-based single
video editing.
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More recently, research made progress in enabling detailed dynamic shape capture of scenes
recorded with less cameras, as well as in enabling dynamic shape reconstruction in less controlled
environments where there are many elements in the scene, backgrounds are dynamic, and lighting
can be uncontrolled and changing. Some works successfully capture dynamic shape geometry
outdoors. In the following, we review example works.

In one line of work, progress was made possible by combining template-based dynamic shape
capture from multi-view camera systems with an inverse rendering approach. Inverse rendering
estimates the scene illumination and surface reflectance of shapes in general scenes by optimizing
a model-to-image similarity measure. Once illumination and reflectance are known, it is feasible to
also refine the surface geometry to extract microscale surface detail via shape-from-shading under
uncontrolled lighting [Wu et al. 2011]. The additional shading-constraints can also be used to
formulate the pose tracking energy functional of template-based performance capture approaches in
a more robust way [Wu et al. 2012]. While the aforementioned works regard all surfaces as
Lambertian surfaces during inverse rendering, it is also feasible to extract more advanced BRDF
reflectance models from multi-view video captured under uncontrolled lighting, which vyields
relightable 3D videos [Li et al. 2013]. The aforementioned approaches still rely on a handful of video
streams as input. More recently, it has been shown that the combination of template tracking and
inverse rendering for illumination, reflectance and detail capture also enables space-time coherent
4D reconstruction (3D + time) of human full body performances [Wu et al. 2013], as well as face
performances [Valgaerts et al. 2012] from only a handheld stereo pair of cameras. Reconstruction
under changing lighting conditions indoors and outdoors is also feasible [Wu et al. 2012].
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The ability to capture dynamic scenes with a single pair of cameras already dramatically
enlarges the application range of 4D reconstruction methods. However, in order to employ
these techniques for temporally coherent model-based video manipulation, they would need
to run from monocular video footage only. 3D and 4D reconstruction from monocular footage
is a highly challenging problem that is — in general — highly underconstrained. However, for
monocular videos showing specific classes of objects, recent methods have shown the
feasibility of high-quality 3D and 4D reconstruction since one can rely more strongly on prior
information constraining the space of plausible reconstructions. In particular, the area of
monocular face performance capture has recently progressed quite rapidly. Recent
approaches typically rely on some form of parametric face model that is fitted to the images
by solving an alignment optimization problem [Garrido et al. 2013, Shi et al. 2014, Ichim et al.
2015], by mesh template tracking [Suwajanakorn et al., 2014], or by applying a learned
regression model for general face shape and expression [Cao et al. 2014], as well as face
detail [Cao et al. 2015]. Many of these face capture approaches also employ on an inverse
rendering approach to perform shape-from-shading-based geometry reconstruction under
general uncontrolled conditions. Since this implies also the estimation of the incident lighting
and face reflectance, one can use them for realistic model-based manipulation of face
expression or appearance in video [Garrido et al. 2013, Shi et al., 2014, Garrido et al. 2015].
We will discuss examples for such model-based face video edits later in this section of the
course.

For some other types of objects in a video, monocular dynamic shape capture is also
feasible. Some approaches rely on a template of a deformable surface which is fitted to video
by means of an analysis-by-synthesis approach [Salzmann et al. 2011, . Hilsmann et al.
2009]. By this means it is also feasible to replace the pattern on a t-shirt in monocular video.
If the object in the scene exhibits a specific pattern, modification of its appearance is easier
(such as the texture on piece of apparel [Scholz et al. 2006)); this corresponds to using a
dense marker-pattern that simplifies tracking and reconstruction. However, this latter type of
approaches requires active interference with the scene which is either not feasible or simply
not possible in general video.

Anther category of methods employs non-rigid-structure-from-motion (NRSfM) techniques to
capture the deforming shape and camera parameters from monocular video. They are
applicable to more general classes of scenes, but the quality of reconstructed models is often
not as high as with the aforementioned approaches that rely on stronger shape priors
[Vincente et al. 2012, Agudo et al. 2014]. Also, simultaneous shape and appearance
reconstruction, which would be needed for many video manipulation tasks, has not yet been
shown in conjunction with NRSfM methods.
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Let us now take a look at an example method for model-based video editing. The video above is an
example result created with the MovieReshape algorithm from Jain et al. from SIGGRAPH Asia
2010. In the video above the physique of the actor shown in the original video (left) has been
algorithmically altered to obtain the result on the right. In particular, the muscularity of the actor was
enhanced. The modified result looks temporally coherent and realistically mimics the appearance of
the original actor. In the following slides we look into its main concepts.
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The effects that MovieReshape enables have many practical applications in professional VFX
productions, as well as in postproduction of private videos. An example can be seen in the movie
“the Lord of the Rings”, where the Hobbits, who are played by human actors of normal size, are
supposed to be much smaller than ,real“ humans shown alongside them in the same shot. In order
to create this effect, it was necessary to resort to complex manual post-processing of frames, or the
recording of scenes in several passes and later compositing. With MovieReshape, such effects
could be achieved in a more efficient way.

Another example can be seen in the movie “Castaway” where the main actor, after spending a long
time on a lonely island undergoes significant changes in his physique. A model-based
postproduction tool may enable such visual changes in physique of an actor without the actor having
to physically undergo these changes in reality.
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One important component of MovieReshape is a statistical human body model that was created from
a database of laser scanned humans. The model captures the variability of human body shape due
to changes in pose and changes in human physique or gender. In other words, the model forms a
prior that we will later use to capture the human pose and shape of an actor in the original video,
and then to modify the human shape in a statistically plausible way.

Building this statistical body model is an off-line step that needs to be done once. It involves a
variety of pre-processing steps, in particular registering a pre-defined shape template to the laser
scans, such that all scans share the same underlying mesh structure. The development of
algorithms for aligning meshes to scans is a research topic in itself and not the focus of this course.
The original laser scans used for building the statistical model for MovieReshape can be found here:
http://gvvperfcapeva.mpi-inf.mpg.de/public/ScanDB/.

Recently, we described in more detail a best practice pipeline to align template meshes to large
scan databases in [Pischulin et al. 2015], and also make source code for scan alignment available.
We also registered the entire CAESAR human body scan database, which features scans of close to
4000 individuals, to rebuild the MovieReshape body model form a larger database. We make the
registered scans available under http://humanshape.mpi-inf.mpg.de/#overview.
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Since the early SCAPE model [Anguelov et al. 2005] statistical models of human shape and pose
have become valuable tools in computer vision and computer graphics. As explained on the
previous slide, such models are learned from a database of registered body scans. The goal is to
learn a representation of both the variation in human shape and human pose using a low
dimensional parameter space.

The original SCAPE model and our simplified version of it parameterize the variations in body shape
by means of a principal component analysis (PCA). PCA identifies the main directions of variation in
a data distribution which form the so-called principal components. New body shapes in the PCA
model can be created by a linear combination of the principal components and the mean body
shape. In MovieReshape, we resort to the first 20 principal components for shape parameterization,
which explain 97% of the total variation in body shape.

Pose in parametric human shape models is usually parameterized with a kinematic skeleton.
Changes in skeleton pose entail surface variations that need to be parameterized. The SCAPE
model by Anguelov et al. uses a rather complex parameterization of pose- and physique-dependent
surface variations that necessitates a linear system solve to reconstruct the surface whenever the
configuration has changed, this can create undesired computational overhead. In MovieReshape we
use a simplified SCAPE model (see also [Pischulin et al. 2015]), in which pose-dependent shape
variation is encoded with a standard surface skinning approach. The skeleton and skinning weights
were designed once for the average human and are rescaled with changes in body shape. The
skeleton dimensions scale with variations in body shape by expressing joint locations as weighted
combinations of nearby surface vertices.
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= Pose parameterized as skeleton + skinning weights
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Since the early SCAPE model [Anguelov et al. 2005] statistical models of human shape and pose
have become valuable tools in computer vision and computer graphics. As explained on the
previous slide, such models are learned from a database of registered body scans. The goal is to
learn a representation of both the variation in human shape and human pose using a low
dimensional parameter space.

The original SCAPE model and our simplified version of it parameterize the variations in body shape
by means of a principal component analysis (PCA). PCA identifies the main directions of variation in
a data distribution which form the so-called principal components. New body shapes in the PCA
model can be created by a linear combination of the principal components and the mean body
shape. In MovieReshape, we resort to the first 20 principal components for shape parameterization,
which explain 97% of the total variation in body shape.

Pose in parametric human shape models is usually parameterized with a kinematic skeleton.
Changes in skeleton pose entail surface variations that need to be parameterized. The SCAPE
model by Anguelov et al. uses a rather complex parameterization of pose- and physique-dependent
surface variations that necessitates a linear system solve to reconstruct the surface whenever the
configuration has changed, this can create undesired computational overhead. In MovieReshape we
use a simplified SCAPE model (see also [Pischulin et al. 2015]), in which pose-dependent shape
variation is encoded with a standard surface skinning approach. The skeleton and skinning weights
were designed once for the average human and are rescaled with changes in body shape. The
skeleton dimensions scale with variations in body shape by expressing joint locations as weighted
combinations of nearby surface vertices.
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The automatically learned PCA dimensions of human shape variation do usually not have an
intuitive semantic meaning. It is very likely that each PCA dimension encodes a combination of
variations that a human would assign individual semantic labels to, such as changes in height, or
changes in body weight. For the laser scanned subjects used for building the simplified SCAPE
model of MovieReshape certain semantic attributes were recorded, such as height, weight, or a
subjective muscularity level in percent. We can therefore learn a linear mapping from the space of
attributes into the PCA space of body shapes. With this regression function it is feasible to modify

the body shape parameters along semantically meaningful dimensions, as shown in the video
above.

Video link: https://www.youtube.com/watch?feature=player_embedded&v=zXSj4pcl9Ao
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The video above shows the operation of MovieReshape using multi-view video footage captured in a
specific studio with blue screen background. The steps will be explained in more detail on the next
slides.

Video link: https://www.youtube.com/watch?feature=player_embedded&v=zXSj4pcl9A0
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First, the pose and shape of the human actor are capture based on our statistical human body
model. In case of multi-view video footage with perfect background segmentation, as shown here,
this can be done automatically. Essentially an error function is minimized between the multi-view
images and the reprojected parametric body model. This error / energy function encodes constraints
from tracked features as well as silhouette boundaries. The exact details are also reviewed in Jain et
al. [2009] and reviewed on the following slide.

After shape and pose at each time step were estimated, one can change the shape parameter of the
model and keep the pose parameters the same. For instance, in the above example video the height
of the body model is changed. Once the shape of the body model is modified it has to be propagated
to the entire video of the actor. This is done by employing an image warping scheme based on
moving least squares [Schaefer et al. 2006] using the projected reshaped model vertices as warping
constraints in each video frame.

Video link: https://www.youtube.com/watch?feature=player_embedded&v=zXSj4pcl9A0
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This slide illustrates the steps that are taken to capture the pose and shape of an actor in video
based on the statistical human model we used in MovieReshape. The unknowns we need to recover
are, firstly, the pose parameters for ach frame of video, i.e. the joint angles and the global pose of
the body model. Second, we need to recover a fixed set of body shape parameters (PCA
coefficients) for the entire video.

These unknown parameters are found by minimizing an error function. This error function encodes
the alignment of our current body model with the person in each frame of video by means of two
main types of constraints. The first type of constraint are silhouette images of the person in the
foreground of the video. They can be computed by standard semi-automatic video segmentation
algorithms as described earlier in this course. The first term in the above energy thus measures the
misalignment of the projected body model and the silhouette of the person.

The second term measures the sum of distance between feature points tracked over time using KLT
[Lucas et al. 1981], and the predicted featured locations from the rendered model. Automatic feature
detection and tracking alone is often not sufficient, in particular if the input is a monocular video:
Trajectories easily break or are interrupted due to self-occlusion, or feature points may not have
been automatically found for body parts that are important but contain only moderate amounts of
texture. MovieReshape therefore provides an interface in which the user can explicitly mark
additional image points to be tracked, and in which broken trajectories can be linked.

The above energy is minimized by using the combined local and global pose optimization strategy of
Gall et al. [2009]. Local pose optimization is extremely fast but may in some cases get stuck in
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incorrect local minima. Such pose errors could be prevented by running a full global pose
optimization. However, global pose inference is prohibitively slow when performed on the
entire pose and shape space. We therefore perform global pose optimization only for those
sub-chains of the kinematic model, which are incorrectly fitted. Errors in the local optimization
result manifest through a limb-specific fitting error that lies above a threshold. For global
optimization, we utilize a particle filter variant.

In practice, we solve for pose and shape parameters in a hierarchical way. First, we solve for
both shape and pose using only a subset of key frames of the video in which the actor shows
a sufficient range pose and shape deformation. It turned out that in all our test sequences the
first 20 frames form a suitable subset of frames. In this first optimization stage, we solely
perform global pose and shape optimization and no local optimization. Thereafter, we keep
the shape parameters fixed, and subsequently solve for the pose in all frame using the
combined local and global optimization scheme.
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Once the shape and pose of the actor in each frame is reconstructed, the shape parameters of the
human can be modified using the MovieReshape interface. Changing the shape parameters of the
model leads to 3D displacements of each vertex relative to the original shape. These 3D
displacements translate to 2D displacements when projected into the image plane. Here, we
assume that intrinsic calibration parameters of the video camera are estimated or given, such that
this projection can be performed. The projected displacement vectors in each frame of video are
then used as constraints in a moving least squares image warping approach [Schaefer et al. 2009].

Please note that each entire frame is warped, no segmentation of the foreground from background is
used as this would imply the need to inpaint disoccluded regions. However, the downside is that the
foreground warp may lead to unnatural deformations in a hallo around the warped person.
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Here is another result in which we realistically modified he waist girth of the actor. The final result
looks very plausible and believably generates the appearance of the modified actor

Of course, the approach is subject to several limitations. Currently, monocular pose tracking is a
semi-automatic process and user interaction is required. Also, the image warping may lead to
unnatural deformations of the background in immediate vicinity of the person in the foreground.
Currently, the approach only warps the appearance of each frame, but many shape changes may
actually leads to shading differences in the image which are currently not modeled. Later on in this
section, we will see approaches that can reproduce such realistic Ishading effects after editing by
resorting to inverse rendering methods.

Video link: https://www.youtube.com/watch?feature=player_embedded&v=zXSj4pcl9Ao
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As a follow-up, we developed a real-time version of MovieReshape that uses RGBD footage from a
Kinect camera as input. In that version of the algorithm a person can look at herself being rendered
with a modified body shape, thereby creating an experience akin to a virtual mirror [Richter et al.

2012).

Link to the video on this slide: http://gvv.mpi-inf.mpg.de/files/3DimPVT/ human_reshape.mp4
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As discussed earlier, in particularly approaches enabling monocular performance capture of faces
have made great strides ahead. Many of these approaches combine geometry tracking over time
with some form of inverse rendering approach that produces an estimate of the scene illumination
and reflectance, along with an estimate of a refined surface geometry. In the following, we will look
in more detail into one of our approaches from this category of methods [Garrido et al. 2013].

Using a parametric face template, it reconstructs detailed space-time coherent scene geometry (see
video), along with diffuse face albedo and incident lighting from monocular video. Lighting does not
need to be engineered in a special way. In the following, we look in a bit more detail into the basics
of this approach.
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First, a parametric model of the face of the recorded actor is designed. This model captures the face
geometry of the target actor (his identity), but also the space of possible face expressions on the
basis a low-dimensional parameterization. In particular, we use a so-called blend shape model with
78 dimensions for face expressions (see next slide). The default blend shape model we use was
designed for an actor with a specific face geometry. The blend shapes of that model therefore need
to be personalized to the new target actor during pre-processing. To do so, we require a static 3D
face scan of the actor in a neutral pose (e.g. from a stereo camera image) for preprocessing, and
then we deform the default blend shapes to the new target model using deformation transfer.

Please note that this parametric model of the face only encodes low-to-medium scale shape detail.
Fine scale face detail is later estimated in an additional step.
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A blend shape model [Lewis et al. 2014] is a low dimensional model of face expressions widely
used in computer animation. It comprises of a neutral face mesh and a set of facial expression
meshes, the blend shapes. A new face expression is defined by a linear combination of the neutral
face and the (difference of each blend shape) to the neutral face. Each blend shape’s influence is
controlled by the controllable weight in the linear combination. When used for face performance
capture, the blend shape weights of the recorded facial expressions need to be inferred from video.
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Given the personalized face model, the expressions and global pose of the face are tracked by
solving an optimization problem. Given constraints extracted from the video frames, the 3D face
shape and expression in each frame need to be determined such that the face model optimally
overlaps with each video frame. The first set of constraints computed for tracking are sparse facial
landmarks in each video frame, such as points on the lip contour, or the eye contour (see video).
These landmarks are extracted using the approach by [Saragih et al., 2011].
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The landmarks are used to estimate the rigid pose, as well as the optimal expression in terms of
blend shape weights by solving a constrained linear optimization problem. Here we make use of the
fact that correspondences were defined between specific 3D face model vertices and the detected
landmarks in the images during pre-processing. The error metric minimized is thus the sum of 2D
image position differences between tracked landmarks and projected landmark locations of the

model.
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Since the blend shape space is not expressive enough to reproduce each face expression exactly,
residual errors remain in the blend shape tracking, i.e. the model does not pixel-perfect align with the
actor’s face in each video frame. In order to reduce these residual alignment errors the tracked mesh
is densely aligned to the face image by employing a novel temporally-coherent method based on
optic flow which. In other words, based on optic flow constraints and using a Laplacian non-rigid
mesh deformation approach, the face model is warped to better match the image.
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By now, the face mesh aligns very well with the captured video frame in terms of global pose and
expression. However, the face mesh is still very smooth and lacks fine expression detail, such as
wrinkles and folds. The last step of face reconstruction therefore extracts a fine scale detail layer on
top of the smooth face reconstruction obtained so far.

The core idea is to employ an inverse rendering approach. In a sense, the coarse deforming face
mesh reconstructed so far is used as a generalized light probe. We assume a sparse set of diffuse
face reflectance classes obtained in a clustering step, and assume that incident lighting is far away
and can be expressed as an environment map parameterized in the spherical harmonics function
basis. Given a few frames of video, the face albedo distribution and the incident lighting are first
computed by minimizing an error energy functional that compares the rendered model to each frame
of video. Once illumination and albedo are computed, the mesh geometry is subsequently optimized
(deformed) such that rendered shading gradients correspond to observed shading gradients. Shape-
refinement is performed in a space-time coherent manner, so refined geometry at each frame is
regularized to be similar to the previous time step. The latter is also an energy minimization step,
and altogether, the described inverse rendering approach thus corresponds to a shape-from-
shading approach under unknown lighting.

The following slides take a side step and explain the basic concepts of this inverse rendering
approach for shape-from-shading under general lighting.
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Let’s briefly look at the idea of inverse rendering from the perspective of the rendering process (see
also earlier slides on the reflectance equation). The reflectance equation [Kajiya 1986] describes the
outgoing light from a point x with normal n towards the viewer in direction w, if the point is
illuminated with incident lighting L from directions Q. The equation depends on the BRDF p of the
point describing its reflectance, lighting L, the visibility function V towards the light, as well as the
cosine of lighting and surface normal. In rendering we assume that all elements on the right hand

side are given or can be computed, and then evaluate it to create a synthetic image of a scene.

103



Background: Inverse Rendering mmpi

v
= Reflectance Equation (Kajiya'86)

@~

B(x, w,) = fﬂ 0 (w3 wo)L(@)V (x, @) max(w; - n(x),0) dw;

) Rendering

2015-08-13

Inverse rendering: find illumination, reflectance, shape
[Wu et al. CVPR2011, ICCV 201, ECCV2012]

Christian Theobalt — User-Centric Computational Videography

104

As the name suggest, inverse rendering is the opposite problem — given an image or several images
of a scene, the entities on the right hands side need to be estimated, in particular the

reflectance p and incident lighting L, as well as the shape of the object itself.

In the following, we assume that we deal with Lambertian objects, such that the BRDF is a constant
diffuse albedo.
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The following slides illustrate the steps taken for shape-from-shading-based geometry refinement (or
short shading-based refinement) under general uncontrolled lighting. For explaining the process we
follow our approach for multi-view shading-based refinement as described in [Wu et al. 2011]. This
method assumes a constant diffuse albedo distribution on the object, and assumes that the object to
be reconstructed is static and recorded from multiple camera views. This approach has later on be
refined in several ways to handle monocular views, a sparse set of albedo distributions on the
surface, as well as space-time coherent shading-based refinement in dynamic scenes. In other
words, the explanation is based on a slightly different setting than in monocular face reconstruction.
However, the basic concepts remain the same in both settings.

Let us assume that the input to our approach is a set of (geometrically and photometrically)
calibrated images of an object under general lighting. Also, let's assume that an initial shape
estimate of the object is given, e.g. from stereo reconstruction or a template-based fitting approach
as in our performance capture setting. The initial model can be a coarse representation of the true
shape of the object.

105



; ; N
Background: Shading-based Refinement Ll ,!miki.m.u.

informatik

= Example — static scene, multiple camera views

Global lighting

Lighting
Estimation

f

Multi-view images MVS results

[Wu et al. CVPR 2011]

2015-08-13 Christian Theobalt — User-Centric Computational Videography 106

In a first step, we use the coarse initial object model as a generalized light probe in the scene and
estimate the incident scene illumination. The next slide looks at this first step in a bit more detail.
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Lighting estimation is formulated as an energy minimization problem. As said before, for a moment it
is assumed that the geometry of the object is accurately represented by the coarse initial shape and
that the surface has uniform albedo. We now minimize the per-pixel appearance difference between
every surface point x of the rendered model projected into each view c (using camera projection
matrix P,) and the corresponding pixel in the captured image. This yields the energy functional
shown above. What we optimize for is an environment map of the incident illumination. To make the
problem tractable, we parameterize the spherically parameterized entities on the right hand side of
the reflectance equation in the spherical harmonics function basis. More specifically, the incident
lighting L, as well as the product of V and max(w; - n(x),0) are separately projected into spherical
harmonics. Both entities can then be represented with a small number of coefficients. Using this
parameterization, the evaluation of the shading equation simplifies to a product of coefficient vectors
[Sloan et al. '02]. What is solved are thus the spherical harmonic coefficients of L.
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Once the incident lighting is estimated, a second optimization problem is solved to refine the coarse
surface geometry using shading cues.
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Once the incident lighting is estimated, a second optimization problem is solved to refine the coarse
surface geometry using shading cues.
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Once the incident lighting is estimated, it can be used in a refinement process of the surface
geometry. Fine scale shape details often lead to shading gradients on the surface. This effect can be
exploited to estimate fine scale surface geometry from images.

Intuitively, the idea is to deform the surface such that the rendered shading gradients match the
measured shading gradients in the images, and the deformation of the surface as whole is smooth.
This process is again formulated as an optimization problem. The alignment energy penalizes
differences in shading gradients rather than absolute intensity values. This makes shape refinement
more robust under possible errors in lighting and reflectance estimation.
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The energy optimized for shape refinement consists of a shading gradient error term and an
anisotropic smoothing term on the surface.
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The gradient penalization term measures the difference between rendered shading gradients and
image gradients. Projections outside of an object’s silhouette in a camera view are penalized.
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The energy comprises an anisotropic smoothness term inspired by mean curvature flow. Essentially
the geometry shall be smooth in regions that appear uniformly. In the direction orthogonal to a
shading gradient, reconstruction shall also be smooth, in the direction of the gradient geometry shall
be less smooth. The first weight above thus depends on the strength of a shading gradient along an
edge of the mesh. The second weight corresponds t the cotangent weights used for discretization of

the Laplace Beltrami operator, see also [Wu et al. 2011] for more details.
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Here are a few results of a multi-view stereo (MVS) reconstruction of a fish sculpture that was
refined with the aforementioned shading-based refinement pipeline (see [Wu et al. 2011]). A
comparison against a laser scan shows the high quality of our purely image-based reconstruction.
Also the comparison of the reconstructed lighting with the ground truth lighting projected into
spherical harmonics demonstrates a faithful estimation.

Please note that for dynamic shape refinement, as used for the face capture results, the above
pipeline has been extended to handle spatially-varying albedo, as well as space-time coherent
geometry reconstruction [Valgaerts et al. 2012, Garrido et al. 2013].
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After this little detour to explain the background of shape-from-shading-based refinement under
general lighting, let’s look at some results on how the approach by Garrido et al. [2013] can be used
for model-based video editing. Since albedo, detailed face geometry, and incident illumination are all
estimated at high detail, one can edit the albedo map for the face, and re-render it on the captured

geometry using the estimated lighting to obtain a photorealistic, temporally stable retexturing
composite on the face.
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Here is another result from our research that shows how the monocular face performance capture
work shown before can be used to achieve advanced video manipulation effects. In many countries
it is common practice that movies in a foreign language are dubbed, i.e. a new audio track in the
country’s language is recorded in a professional dubbing studio and overlaid with the video.

The challenge is to time the new audio such that it still matches the mouth motion of an actor as
good as possible. Of course, there can never be a perfect audio-visual alignment, the source and
target languages are usually too different. This can easily lead to visual discomfort, and it is the
reason why many people dislike dubbed movies. To remedy this problem, we looked into an
approach to re-render the lower face motion of an actor in a dubbed video such that it matches the
new audio track in the target language [Garrido et al. 2015]. The core idea is to capture both the
actor in target video that is to be dubbed, as well as the face motion of the dubbing actor using the
monocular face performance capture approach of Garrido et al. 2013. The mouth motion of the
dubbing actor can then be used to drive the motion of the target actor’s face by means of blend
shape coefficient transfer. Since lighting (and in this new work) also a dense face albedo map were
estimated, the new mouth motion of the actor can be re-rendered and overlaid with the original
video. The mouth interior also needs to be resynthesized, which is done based on a geometric tooth
proxy as well as a backdrop for the inner mouth cavity.
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As mentioned on the previous slide the appearance and lighting estimation enables us to realistically
re-render the target actor’s face in a new pose. Since the mouth motion changes quite notably in the
re-renderings for dubbing, the mouth interior needs to also be synthesized. For this, we use a mouth
interior proxy with a tooth layer template as shown above.

117



. . Ifnpni
Recent Work: Garment Replacement in Monocular Video max planck insttu

informatik

[Rogge et al., TOG 2014]
2015-08-13 Christian Theobalt — User-Centric Computational Videography 18

Let us now take a look at some related model-based video editing approaches proposed recently.
The work by Rogge et al. [2014] shows how the clothing of an actor can be replaced in monocular
video using a semi-automatic approach. The method also tracks the shape and pose of an actor’s
body with a parametric human body model, similar to MovieReshape discussed earlier. Using this
shape proxy, the scene albedo and incident illumination are coarsely estimated based on a discrete
set of spherically arranged light sources as illumination parameterization. Given the moving body
geometry and the estimated lighting, moving garment on the body model can be physically
simulated and rendered from the camera position of the video using a professional authoring tool.
The rendered clothing can then be overlaid with the original video. Since body model reconstruction
is not perfect, a feature-based stabilization of the overlay is applied as a post-processing step.
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= Lightweight correspondence models in video enable (semi-)automatic
solution of several advanced video modification problems and remain
sufficiently general

= Generality at the cost of remaining artefacts

= Alternatively, approaches relying on stronger shape and appearance
models enable a higher level of realism in the final editing results

= Only applicable to certain types of scenes
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