

Seminar Logistics

Seminar Registration

Within 3 weeks from the date of topic assignment

Extra Sessions

We have 8 filled slots; the remaining will be filled up.

Reminder

Read the papers and send the questions by Wednesday 8 AM rdabral@mpi-inf.mpg.de

Moderator

Will get a mail on Wednesday morning

INTRODUCTION

About Myself

Rishabh Dabral, PhD (IIT Bombay)

Postdoc

Deptt. for Visual Computing and Artificial Intelligence Max Planck Institute for Informatics

Computer Vision and Graphics
Human motion capture and synthesis
Human-Object Interaction
3D Reconstruction

Webpage:

https://rishabhdabral.github.io/

RECAP

From Last Week ...

Iterative Process

RECAP

From Last Week ...

Iterative Process

Paper Structure

Title / Header

- Abstract
- 1. Introduction
- 2. Related Work
- 3. Method
- 4. Experiments
- 5. Conclusions
 Acknowledgements
 References
 Appendix

RECAP

From Last Week ...

Paper

Title / Header Abstract 1. Introduction 2. Related Work 3. Method 4. Experiments

5. Conclusions

Acknowledgements References Appendix

Iterative Process

3-Pass Approach

Scan → Read → Understand

From Last Week ...

Paper Structure

Title / Header

Abstract

1. Introduction

2. Related Work

3. Method

4. Experiments

5. Conclusions
 Acknowledgements
 References
 Appendix

After you've understood the paper ...

You will have to present them!

Basic Structure

Introduction

Say what you will say

Scientific Details

Say it

Conclusion

Summarise what you said

Logic over Suspense

VS

Example Structure

Appropriate title

Affiliations

Example Structure

Introduction

Task Definition

Motivation

Prior Works

Know Your Audience

Edit/adjust your slides

Audience: University Seminar

Fellow Students

Many Topics

Message

Broad technical backgrounds

Provide an overview of the SoTA

Why is the problem important?

Investigate

Seek

Novelty and impact

Insights and takeaways

"Not every detail is important"

PREPARATION

Overview Figures: an Example

How do we tokenize 3D data?

How do we tokenize 3D data?

<N, 3> ----- <N, D>

360 sampling

3D-2D Alignment

Per-pixel features

ConceptFusion, SAM, DINOv2, CLIP-LSeg

Concept Grounding

Concepts:

<Wall>, <Curtain>, <Shiny>, <Heavy>, <Big>, <Edible>

CLIP

Attn: $\langle f_i, v \rangle$

3D-2D Alignment

PREPARATION

Overview Figures: an Example

Overview Figures: an Example

Overview figures typically:

- Introduce the core-concept
- Illustrate the inputs/outputs
- Describe the method's workflow

If you use web sources, do not forget to reference them.

PREPARATION

PREPARATION

PREPARATION

Overview Figures: Tip

< Your creative explanation here>

Caption your figures; esp. for the method and the results.

Overview Figures: Tip

<Your creative explanation here>
Attention is precious, don't lose it

Using Tables

date	discharge	precipitation	date	discharge	precipitation
	(cf/s)	(in/day)		(cf/s)	(in/day)
1-Nov	631	0	1-Dec	1480	0.07
2-Nov	808	0	2-Dec	2920	0.96
3-Nov	794	0.08	3-Dec	2380	0
4-Nov	826	0	4-Dec	1990	0
5-Nov	1060	1.09	5-Dec	1770	0
6-Nov	1080	0.48	6-Dec	1620	0.1
7-Nov	1040	0.28	7-Dec	1500	0
8-Nov	779	0	8-Dec	1420	0
9-Nov	686	0	9-Dec	1350	0
10-Nov	670	0	10-Dec	1290	0
11-Nov	696	0.53	11-Dec	1280	0.1
12-Nov	831	0.23	12-Dec	1330	0.47
13-Nov	985	0.45	13-Dec	1280	0
14-Nov	1080	0.14	14-Dec	1250	0.57
15-Nov	1350	0.65	15-Dec	1190	0.04
16-Nov	1430	0	16-Dec	1180	0
17-Nov	2440	1.6	17-Dec	1160	0.17
18-Nov	2280	0	18-Dec	1120	0.01
19-Nov	2040	0	19-Dec	1080	0
20-Nov	1830	0.55	20-Dec	1070	0
21-Nov	1650	0	21-Dec	1080	0
22-Nov	1560	0	22-Dec	1060	0
23-Nov	1520	0.39	23-Dec	1060	0.18
24-Nov	1410	0	24-Dec	1050	0
25-Nov	1320	0	25-Dec	1050	0.5
26-Nov	1310	0.11	26-Dec	986	0
27-Nov	1450	0.78	27-Dec	1010	0
28-Nov	1560	0.22	28-Dec	1010	0.07
29-Nov	1550	0.45	29-Dec	977	0
30-Nov	1480	0	30-Dec	972	0
			31-Dec	957	0

Caption your tables; explain the units.

Using Maths and Equations

Use equations to express, not to impress.

If you **show** it, you must **explain** it.

Using Maths and Equations

$$\begin{split} \mathfrak{E}(\mathbf{T}^{1}, \mathbf{T}^{2}, \dots, \mathbf{T}^{|\mathbf{Z}|}, \mathbf{w}) &= \sum_{\zeta \in \mathbf{Z}} \alpha_{\zeta} \, \mathfrak{E}_{\text{data}}(\mathbf{T}^{\zeta}) + \\ &+ \sum_{\zeta \in \mathbf{Z}} \beta_{\zeta} \, \mathfrak{E}_{\text{pICP}}(\mathbf{T}^{\zeta}) \, + \gamma_{\zeta} \, \sum_{\zeta \in \mathbf{Z}} \mathfrak{E}_{\text{l.reg.}}(\mathbf{T}^{\zeta}, \mathbf{w}) + \\ &+ \eta \, \, \mathfrak{E}_{\text{r.opt.}}(\mathbf{w}) + \sum_{\zeta = 3}^{|\mathbf{Z}|} \lambda_{\zeta} \, \mathfrak{E}_{\text{c.}}(\mathbf{T}^{\zeta}). \end{split}$$

Using Maths and Equations

$$\begin{split} \mathfrak{E}(\mathbf{T}^{1}, \mathbf{T}^{2}, \dots, \mathbf{T}^{|\mathbf{Z}|}, \mathbf{w}) &= \sum_{\zeta \in \mathbf{Z}} \alpha_{\zeta} \, \mathfrak{E}_{\text{data}}(\mathbf{T}^{\zeta}) + \\ &+ \sum_{\zeta \in \mathbf{Z}} \beta_{\zeta} \, \mathfrak{E}_{\text{pICP}}(\mathbf{T}^{\zeta}) \, + \gamma_{\zeta} \, \sum_{\zeta \in \mathbf{Z}} \mathfrak{E}_{\text{l.reg.}}(\mathbf{T}^{\zeta}, \mathbf{w}) + \\ &+ \eta \, \, \mathfrak{E}_{\text{r.opt.}}(\mathbf{w}) + \, \sum_{\zeta = 3}^{|\mathbf{Z}|} \lambda_{\zeta} \, \mathfrak{E}_{\text{c.}}(\mathbf{T}^{\zeta}). \end{split}$$

optimization over multiple frames

Using Maths and Equations

$$\mathbf{E}_{\mathrm{traj}}(oldsymbol{ heta},\mathbf{z}) = \left\| (\mathbf{1}_T \otimes ar{\mathbf{S}}) + f_{oldsymbol{ heta}}(\mathbf{z}) - (oldsymbol{\Phi} \otimes \mathbf{I}_3) \mathbf{A}
ight\|_{\epsilon}, \quad oldsymbol{\Phi} = egin{pmatrix} \phi_{1,1} \dots \phi_{1,K} \ dots & \ddots & dots \ \phi_{T,1} \dots \phi_{T,K} \end{pmatrix}$$

General Rules

A scientific talk is about How and Why.

Explain what you do.

What is new and innovative.

Motivate why this is the way to go

General Rules

- No more than one minute per slide on average.
 - Avoid writing complete sentences. But if you must write them, READ them. Else the 3 45 nout lets perits lide reading the text and listening to you.
- Check the slide apearance consistency; colors are important.
- No sound, unless it is part of the results.
- · Vifoarstaticus idel takes 2.4-e-minutesyork properly, esp. for cloud-based presentation tools.
- Spelling and wconsider splitting it.
 Use the same font (or a few fonts).

 - Check the text for typos; check te grammar.
 - Decide between British and American English, and use the chosen language consistently.

Preparing yourself

Presentation Matters
The way you present is as important as your slides.

Preparing yourself

Presentation Matters

Immerse Yourself

Speak with conviction.
Be excited about your talk.

Preparing yourself

Presentation Matters

Immerse Yourself

Body Language

Eye Contact

Just the right amount

Intonation

Avoid reading from a script

Preparing yourself

Presentation Matters

Immerse Yourself

Body Language

Rehearse! Rehearse! Rehearse!

Duration Check

To avoid 'skipping slides in the interest of time'

Logistics Check

Projectors, connectors, power, A/V

Logic Check

Is the flow right?

Preparing yourself

Presentation Matters

Immerse Yourself

Body Language

Rehearse! Rehearse!

Feynmann Technique

Introspect

What you know, and what you don't

Teach a Child

Sans jargons, with brevity

Upgrade

Identify the knowledge gaps, and re-organize

Preparing yourself

"If you can't explain it simply, you don't understand it well enough."

At the Stage

2

Make yourself comfortable Ensure audibility and visibility

3

4

Start strong, maybe memorise the start

Nervousness is normal

Feel the mood of the room!

Concluding the Presentation

 $\left(1\right)$

2

Announce the ending

Focus on the core points

(3)

Come back to the big picture

New Perspectives

Describe future works
Discuss potential implications

Concluding the Presentation

1

2

Announce the ending

Focus on the core points

 $\left(3\right)$

Come back to the big picture

Tip

Put some graphics back

For this Seminar

Compare and Correlate the two papers

Propose a common conclusion

Present own ideas/extensions

Questions are Useful

Instant feedback on your presentation.

Can add additional dimensions to the discussion

Rephrase in your words

Gives you time to think

Helps the audience too

Opportunity to clarify

When Replying

Be concise

Do not drift from the topic

Anticipate questions

Prepare backup slides

Be positive

Never demean the question/questioner

Moderators

Your job is to **foster discussion**, not to pit the presenter against the audience.

For Moderators

Prepare a mini-presentation

Weaknesses/limitations of the methods
Summarize & compare
Ask other participants about their ideas
Unclear points

CONCLUSION

Takeaways

Structure your story

Filter the core message

Use figures, tables and maths approriately

Practice your presentation

Be prepared for questions

CONCLUSION

Best Presentation-Ever Bingo

Didn't pre-load the presentation	Over-ran time	Used as many bullet points as humanly possible	
	Apologized for unreadable slides	Acted as if had never used PowerPoint	Embraced Obfuscation
Used incredibly complex plots		Used as many slides as humanly possible	Crammed as much as possible onto each slide
Included a video fail	Didn't check the presentation worked beforehand		Used tables with more data than any sane person could read

CONCLUSION

Materials Used

This talk is a revised version of *How to Give a Good Scientific Talk* by Prof. Dr. Christian Theobalt, 2017.

Some ideas are from:

How to Give a Good Talk by S. Pfirman (Cornell University), and How to Give Scientific Presentations by T. Williams (Texas A&M University).

