Graphics, Vision & Video

Automatic Face Reenactment

CVPR 2014

Pablo Garrido 1   Levi Valgaerts 1   Ole Rehmsen 1   Thorsten Thormaehlen 2   Patrick Perez 3   Christian Theobalt 1
1 MPI for Informatics 2 Philipps-Universitaet Marburg 3 Technicolor research
Abstract Video Bibtex

Abstract

We propose an image-based, facial reenactment system that replaces the face of an actor in an existing target video with the face of a user from a source video, while preserving the original target performance. Our system is fully automatic and does not require a database of source expressions. Instead, it is able to produce convincing reenactment results from a short source video captured with an off-the-shelf camera, such as a webcam, where the user performs arbitrary facial gestures. Our reenactment pipeline is conceived as part image retrieval and part face transfer: The image retrieval is based on temporal clustering of target frames and a novel image matching metric that combines appearance and motion to select candidate frames from the source video, while the face transfer uses a 2D warping strategy that preserves the user's identity. Our system excels in simplicity as it does not rely on a 3D face model, it is robust under head motion and does not require the source and target performance to be similar. We show convincing reenactment results for videos that we recorded ourselves and for low-quality footage taken from the Internet.

Paper
pdf (2.2M)
Supplementary Material
pdf (3.9M)
Video
mp4 (85.1M)
Poster
pdf (1.1M)

Videos

Supplementary video to the paper

Bibtex

 
@inproceedings{GVRTPT14,
author = {Pablo Garrido and Levi Valgaerts and Ole Rehmsen and Thorsten Thormaehlen and Patrick Perez and Christian Theobalt},
title = {Automatic Face Reenactment},
booktitle = {2014 {IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR} 2014, Columbus, OH, USA, June 23-28, 2014},
pages = {4217--4224},
year = {2014},
url = {http://dx.doi.org/10.1109/CVPR.2014.537},
doi = {10.1109/CVPR.2014.537} }