Rendering Comparisons |
Taking multiview videos as input, our method learns the spatio-temporal density, color, and velocity fields.
|
Volumetric Density, (front-side-top, rendered with uniform ambient lighting) |
Warping Errors, (left: warp frame i to i+1; right: warp frame i and i+1 to i+0.5) |
- NeuralVolumes, alpha2den: Due to the "ghost density", the alpha (defined in NV) fails to model the actual smoke density. |
Velocity, (the middle slice of front-side-top, intensity reduced outside visual hull) |
Vorticity, (the middle slice of front-side-top within the visual hull) |
Rendering Comparisons |
Volumetric Density, (front-side-top) Velocity(left) and Vorticity(right), (middle slices, front-side-top) Warping Error, (left: warp frame i to i+1; right: warp frame i and i+1 to i+0.5) |
The conclusion of the synthetic scene evaluation is consistent with the real case, where NeuralVolumes contains "ghost density" and GlobalTrans has noises. The noise is more visible when looking at the density alone in "Volumetric Density" on top right, as well as in the velocity and vorticity fields. "Warping Error" on the bottom right shows that our results fulfill the transport equation better than GlobalTrans on the real case. |
Rendering Comparisons |
- NeuralVolumes: With much "ghost density", NeuralVolumes can easily render more details, since keeping view-consistency is not necessary with their occlusion. |
Volumetric Comparisons |
The color-bleeding artifact is more visible in the density visualization. Our velocity is closer to the reference with enhanced vorticity. |
Sphere Scene, Ref | Ours | Ours w.o. d2v | NeRF+T | Neural Volumes |
---|
"Ghost density" is visible everywhere for NeRF+T. NeuralVolumes has some "ghost density" in white and some in the color of the sphere. Ours reconstructs the smoke nicely, while Ours w.o. d2v is slightly blurry |
Unsupervised Separation of Static and Dynamic parts |
---|
Static and dynamic components are nicely seperated. |
Estimated Density and Velocity |
---|
With the model-based supervision, our full model presents more accurate velocity with clearer vorticity. |
Car | Game |
---|---|
Scenes | Image Resolution | Total Training Iterations |
Total Training Time |
Hyper-parameters for Radiance Supervision |
Hyper-parameters for Velocity Supervision |
|
---|---|---|---|---|---|---|
ScalarFlow | Synthetic | 360x640 | 200k | 30h | $\mathcal{L}_{\widetilde{\mathit{img}}} + 0.025\mathcal{L}_{VGG} + 0.1\mathcal{L}_{ghost}$ | $2\mathcal{L}_{\frac{D\sigma}{Dt}} + 0.0005\mathcal{L}_{NSE} + 6\mathcal{L}_{d2v}$ |
Real | 540x960 | 500k | 74h | $\mathcal{L}_{\widetilde{\mathit{img}}} + 0.025\mathcal{L}_{VGG} + 0.1\mathcal{L}_{ghost}$ | $2\mathcal{L}_{\frac{D\sigma}{Dt}} + 0.0005\mathcal{L}_{NSE} + 6\mathcal{L}_{d2v}$ | |
Complex Lighting |
Plume | 400x400 | 200k | 31h | $\mathcal{L}_{\widetilde{\mathit{img}}} + 0.025\mathcal{L}_{VGG} + 0.05\mathcal{L}_{ghost}$ | $2\mathcal{L}_{\frac{D\sigma}{Dt}} + 0.0005\mathcal{L}_{NSE} + 6\mathcal{L}_{d2v}$ |
Sphere | 400x400 | 150k | 37h | $\mathcal{L}_{\widetilde{\mathit{img}}} + 0.025\mathcal{L}_{VGG} + 0.05\mathcal{L}_{ghost} + 0.05\mathcal{L}_{overlay} $ | $2\mathcal{L}_{\frac{D\sigma}{Dt}} + 0.0005\mathcal{L}_{NSE} + 6\mathcal{L}_{d2v}$ | |
Complex Obstacles |
Car | 960x500 | 200k | 51h | $\mathcal{L}_{\widetilde{\mathit{img}}} + 0.025\mathcal{L}_{VGG} + 0.01\mathcal{L}_{ghost} + 0.05\mathcal{L}_{overlay} $ | $2\mathcal{L}_{\frac{D\sigma}{Dt}} + 0.0005\mathcal{L}_{NSE} + 6\mathcal{L}_{d2v}$ |
Game | 800x800 | 250k | 64h | $\mathcal{L}_{\widetilde{\mathit{img}}} + 0.025\mathcal{L}_{VGG} + 0.01\mathcal{L}_{ghost} + 0.05\mathcal{L}_{overlay} $ | $2\mathcal{L}_{\frac{D\sigma}{Dt}} + 0.0005\mathcal{L}_{NSE} + 6\mathcal{L}_{d2v}$ |